→ Средства измерения. Средства измерения, их классификация По стандартизации средств измерений

Средства измерения. Средства измерения, их классификация По стандартизации средств измерений

Средство измерений - это техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства. Детальная классификация средств измерений (СИ) электрических и радиотехнических величин будет приведена и рассмотрена в § 2.1. Здесь мы ограничимся общей классификацией СИ по техническому и метрологическому назначениям, регламентируемой ГОСТ 16263-70.

По техническому назначению СИ подразделяются на меры, измерительные приборы, измерительные преобразователи и вспомогательные СИ. Кроме того, совокупность различных СИ может образовывать измерительные установки и системы.

Мера - СИ, предназначенное для воспроизведения физической величины заданного размера. Мера необходима в первую очередь при реализации всех модификаций метода сравнения, так как именно с помощью меры получают величину, значение которой нам известно.

Измерительный прибор - СИ, предназначенное для выработки сигнала измерительной информации (измерительного сигнала) в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы - основной вид СИ электрических и радиотехнических величин, изучаемых в курсе.

Измерительный преобразователь - СИ, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем. Измерительные преобразователи могут как входить в состав измерительных приборов, так и применяться самостоятельно. Поэтому категория СИ, охватывающая измерительные приборы и преобразователи, называется также измерительными устройствами.

Измерительная установка - совокупность функционально объединенных СИ и вспомогательных устройств, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенная в одном месте.

Измерительная система - совокупность СИ и вспомогательных устройств, соединенных между собой каналами связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и использования в различных системах управления. Измерительные системы являются одной из наиболее распространенных разновидностей информационно-измерительных систем.

По метрологическому назначению все СИ дифференцируются на эталоны, образцовые и рабочие СИ.

Эталон - СИ (или комплекс СИ), обеспечивающее воспроизведение и (или) хранение единицы физической величины для передачи ее размера нижестоящим СИ, выполненное по особой спецификации и официально утвержденное в качестве эталона.

Образцовое СИ - это мера, измерительный прибор или измерительный преобразователь, имеющие высокую точность и служащие для поверки по ним других СИ. Они также утверждаются в качестве образцовых и имеют специальную классификацию.

Рабочее СИ - это такое СИ, которое применяется для измерений, не связанных с передачей размера единиц физических величин. Именно такие измерения, называемые также техническими, наиболее широко представлены в измерительной практике и выполняются на всех этапах проектирования, производства и эксплуатации продукции. Поэтому рассматриваемые далее принципы построения и структурные схемы электро- и радиоизмерительных приборов относятся в основном к рабочим СИ.

В метрологии средства измерений принято классифицировать по виду, принципу действия и метрологическому назначению.

Различают следующие виды средств измерений: меры, измерительные устройства; измерительные установки и измерительные системы (рис. 1.1).

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Рис. 1.1. Классификация средств измерений

Самим многочисленным видом средств измерений являются измерительные устройства , применяемые самостоятельно или в составе измерительных систем.

В зависимости от формы представления сигнала измерительной информации измерительные устройства подразделяют на измерительные приборы и измерительные преобразователи.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительная информация обычно представляется в виде перемещения указателя по шкале, перемещения указателя по шкале, перемещения пера по диаграмме или в виде цифр, появляющихся на табло.

Измерительные приборы могут быть классифицированы по ряду признаков. Наиболее важные позиции метрологии признаки отражены на рис. 1.1.

Измерительный преобразователь – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающийся непосредственному восприятию наблюдателем.

Измерительная информация представляется преобразователями обычно в виде сигналов или переменного тока или напряжения, давления сжатого воздуха или жидкости, частоты гармонических колебаний, последовательности прямоугольных импульсов и т. п.

Как видно на рис. 1.1, измерительные преобразователи могут быть классифицированы в зависимости от используемого метода измерения и способа представления величины совершенно аналогично измерительным приборам. Кроме того, принято различать измерительные преобразователи по расположению в измерительной системе и ввиду функции преобразования, представляющей собой зависимость сигнала измерительного преобразователя от измеряемой физической величины. Помимо приведенной на рис. 1.1 классификации измерительных приборов и преобразователей используют и другие.

По роду измеряемой величины измерительные устройства подразделяют на амперметры – для измерения тока, термометры – для измерения температуры, манометры – для измерения давления, концентраторы – для измерения концентрации веществ и т. п.

По степени защиты измерительные устройства бывают в нормальном (обыкновенном), пыле- водо-, взрывозащищенном, герметичном и т. д. исполнении.

Измерительные приборы подразделяют по характеру применения на стационарные (щитовые), корпус которых приспособлен для жесткого крепления на месте установки, и переносные, корпус которых не приспособлен для жесткого крепления.

Измерительная установка – совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенных для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенных в одном месте. Измерительные установки обычно используются в научных исследованиях, осуществляемых в различных лабораториях, при контроле качества в метрологических службах для определения метрологических свойств средств измерений.

Измерительная система – совокупность средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединенных между собой каналами связи, предназначенная для выработки сигнала измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления. В настоящее измерительные системы часто рассматриваются как один из классов так называемых информационно-измерительных систем.

Информационно-измерительная система (ИИС) – совокупность функционального объединенных измерительных, вычислительных и других вспомогательных технических средств, служащая либо для получения измерительной информации, ее преобразования, обработки в целях представления потребителю (в том числе ввода в АСУ) в требуемом виде, либо для автоматического осуществления логических функций контроля, диагностики, идентификации.

Кроме рассмотренной классификации средств измерений по виду существенной является классификация по принципу действия.

Принципом действия средства измерений называют физически принцип, положенный в основу построения средств измерения данного вида. Принцип действия обычно находит отражение в названии средства измерений, например: термоэлектрический термометр, деформационный манометр, электромагнитный расходомер и т. п.

В силу того, что для средств измерений различных величин классификация по принципу действия является специфичной, при дальнейшем изложении она будет приводиться для каждой величины.

И наконец, существенной с позиций метрологии является классификация средств измерений по метрологическому назначению, в соответствии с которой принято различать образцовые и рабочие средства измерений.

Рабочее средство измерений – средство, применяемое для измерений, не связанных с передачей размера единиц. Рабочие средства измерений – это все громадное многообразие измерительных приборов, преобразователей, измерительных установок и систем, применяемых во всех областях деятельности человека.

Образцовое средство измерений – мера, измерительный прибор, измерительный преобразователь, служащее для поверки по нему других (как рабочих, так и образцовых меньшей точности) средств измерений и утвержденное в качестве образцового.

Средством измерений (СИ) называют техническое средство (или их комплекс), используемое при измерениях и имеющее нормированные метрологические характеристики. В отличие от таких технических средств, как индикаторы, предназначенных для обнаружения физических свойств (компас, лакмусовая бумага, осветительная электрическая лампочка), СИ позволяют не только обнаружить физическую величину, но и измерить ее, т.е. сопоставить неизвестный размер с известным. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения (измерение плоского угла транспортиром, массы - с помощью весов с гирями). Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее

реакцией на воздействие той же величины, но известного размера (измерение силы тока амперметром). Для облегчения сравнения ещё на стадии изготовления прибора отклик на известное воздействие фиксируют на шкале отсчетного устройства, после чего наносят на шкалу деления в кратном и дольном отношении. Описанная процедура называется градуировкой шкалы. При измерении она позволяет по положению указателя получать результат сравнением непосредственно по шкале отношений.

Итак, СИ (за исключением некоторых мер - гирь, линеек) в простейшем случае производят две операции:

Обнаружение физической величины;

Сравнение неизвестного размера с известным или сравнение откликов на воздействие известного и неизвестного размеров.

Другими отличительными признаками СИ являются:

- ≪умение≫ хранить (или воспроизводить) единицу физической величины;

Неизменность размера хранимой единицы.

Если же размер единицы в процессе измерений изменяется более, чем установлено нормами, то с помощью такого средства невозможно получить результат с требуемой точностью. Отсюда следует, что измерять можно только тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру (во времени).

Классификация средств измерений

СИ можно классифицировать по двум признакам:

Конструктивное исполнение;

Метрологическое назначение.

По конструктивному исполнению СИ подразделяют на меры, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы.

Меры величины - СИ, предназначенные для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров.

Различают меры:

Однозначные (гиря 1 кг, калибр, конденсатор постоянной ёмкости);

Многозначные (масштабная линейка, конденсатор переменной емкости);

Наборы мер (набор гирь, набор калибров).

Набор мер, конструктивно объединенных в единое устройство, в котором имеются приспособления для их соединения в различных комбинациях, называется магазином мер. Примером такого набора может быть магазин электрических сопротивлений, магазин индуктивностей. Сравнение с мерой выполняют с помощью специальных технических средств - компараторов (рычажные весы, измерительный мост и т.д.).

К однозначным мерам можно отнести стандартные образцы (СО) . Существуют стандартные образцы состава и стандартные образцы свойств. СО состава вещества (материала) - стандартный образец с установленными значениями величин, характеризующих содержание определенных компонентов в веществе (материале).

СО свойств веществ (материалов) - стандартный образец с установленными значениями величин, характеризующих физические, химические, биологические и другие свойства.

Новые СО допускаются к использованию при условии прохождения ими метрологической аттестации. Указанная процедура - это признание этой меры, узаконенной для применения на основании исследования СО. Метрологическая аттестация проводится органами метрологической службы.

В зависимости от уровня признания (утверждения) и сферы применения различают категории СО - межгосударственные, государственные, отраслевые и СО предприятия (организации).

Измерительные преобразователи (ИП) - СИ, служащие для преобразования измеряемой величины в другую величину или сигнал измерительной информации, удобный для обработки, хранения, дальнейших преобразований. По характеру преобразования различают аналоговые (АП), цифроаналоговые (ЦАП), аналого-цифровые (АЦП) преобразователи. По месту в измерительной цепи различают первичные (ИП, на который непосредственно воздействует измеряемая физическая величина) и промежуточные (ИП, занимающий место в измерительной цепи после первичного ИП) преобразователи.

Конструктивно обособленный первичный ИП, от которого поступают сигналы измерительной информации, является датчиком. Датчик может быть вынесен на значительное расстояние от СИ, принимающего его сигналы. Например, датчики запущенного метеорологического радиозонда передают информацию о температуре, давлении, влажности и других параметрах атмосферы.

Если преобразователи не входят в измерительную цепь и их метрологические свойства не нормированы, то они не относятся к измерительным. Таковы, например, силовой трансформатор в радиоаппаратуре, термопара в термоэлектрическом холодильнике.

Измерительный прибор - СИ, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Прибор, как правило, содержит устройство для преобразования измеряемой величины и её индикации в форме, наиболее доступной для восприятия. Устройство для индикации имеет шкалу со стрелкой или другим устройством, диаграмму с пером или цифроуказатель, с помощью которых могут быть произведены отсчет или регистрация значений физической величины. В случае сопряжения прибора с мини-ЭВМ отсчет может производиться с помощью дисплея.

По степени индикации значений измеряемой величины измерительные приборы подразделяют на показывающие и регистрирующие. Показывающий прибор допускает только отсчитывание показаний измеряемой величины (микрометр, аналоговый или цифровой вольтметр). В регистрирующем приборе предусмотрена регистрация показаний - в форме диаграммы, путем печатания показаний (термограф или, например, измерительный прибор, сопряженный с ЭВМ, дисплеем и устройством для печатания показаний).

Измерительная установка совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей и других устройств, предназначенных для измерений одной или нескольких физических величин и расположенных в одном месте. Примером являются установка для измерения удельного сопротивления электротехнических материалов, установка для испытаний магнитных материалов. Измерительную установку, предназначенную для испытаний каких-либо изделий, иногда называют испытательным стендом.

Измерительная система - совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, ЭВМ и других технических средств, размещенных в разных точках контролируемого пространства с целью измерений одной или нескольких физических величин, свойственных этому пространству. Примером может служить радионавигационная система для определения местоположения судов, состоящая из ряда измерительных комплексов, разнесенных в пространстве на значительном расстоянии друг от друга.

≪Лицо≫ современной измерительной техники определяется автоматизированными измерительными системами (АИС), информационно-измерительными системами (ИИС), измерительно-вычислительными комплексами (ИВК). Типичная ИИС содержит в своем составе ЭВМ и обеспечивает сбор, обработку и хранение информации, поступающей от многочисленных датчиков, характеризующих состояние объекта или процесса. При этом результаты измерений выдаются как по заранее заданной программе, так и по запросу.

В условиях расширяющейся автоматизации измерительных процессов обработки деталей и сборки узлов и агрегатов, повышения требований к производительности, точности и качеству всё большее значение приобретают автоматические средства измерения и контроля.

Автоматическое средство измерения – это средство измерения, производящее без непосредственного участия человека измерения и все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала. Если это средство встроено в автоматическую технологическую линию, оно называется измерительным автоматом или контрольным автоматом.

Автоматические средства измерения классифицируются по степени автоматизации, виду воздействия на технологический процесс, способу преобразования измерительного импульса, месту установки, числу проверяемых параметров.

По метрологическому назначению все СИ подразделяются на два вида:

Рабочие СИ;

Эталоны.

Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть:

Лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях;

Производственными, используемыми для контроля характеристик технологических процессов, контроля качества готовой продукции, контроля отпуска товаров;

Полевыми, используемыми непосредственно при эксплуатации таких технических устройств, как самолеты, автомобили, речные и морские суда и др.

К каждому виду РСИ предъявляются специфические требования:

– к лабораторным - повышенная точность и чувствительность;

– к производственным - повышенная стойкость к ударно-вибрационным нагрузкам, высоким и низким температурам;

– к полевым - повышенная стабильность в условиях резкого перепада температур, высокой влажности.

Эталоны являются высокоточными СИ, а поэтому используются для проведения метрологических измерений в качестве средств передачи информации о размере единицы. Размер единицы передаётся ≪сверху вниз≫, от более точных СИ к менее точным ≪по цепочке≫: первичный эталон - вторичный эталон - рабочий эталон 0-го разряда - рабочий эталон 1-го разряда... - рабочее средство измерений.

Передача размера осуществляется в процессе поверки СИ. Целью поверки является установление пригодности СИ к применению. Соподчинение СИ, участвующих в передаче размера единицы от эталона к РСИ, устанавливается в поверочных схемах СИ .

Поверочная схема – это документ, содержащий правила передачи размера единицы от эталона рабочим средствам измерений. Россия располагает самой современной эталонной базой. Она входит в тройку самых совершенных наряду с базами США и Японии. Эталонная база в дальнейшем будет развиваться в количественном и главным образом в качественном отношении. Перспективно создание многофункциональных эталонов, т.е. эталонов, воспроизводящих на единой конструктивной и метрологической основе не одну, а несколько единиц физических величин или одну единицу, но в широком диапазоне измерений. Так, метрологические институты страны создают единый эталон времени, частоты и длины, который позволит, кстати, уменьшить погрешность воспроизведения единицы длины до 1 10 -11 .

Средство измерений представляет собой техническое средство, предназначенное для нахождения опытным путем с оцененной точностью значения заранее выбранной измеряемой физической величины.

Средство измерений имеет нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимается неизменным в пределах установленной погрешности и в течение известного интервала времени.

В зависимости от степени стандартизации выделяют:

  • 1) стандартизованные средства измерений, изготовленные в соответствии с требованиями национального стандарта;
  • 2) нестандартизованные средства измерений – уникальные средства измерений, предназначенные для специальной измерительной задачи, в стандартизации требований к которому нет необходимости. Нестандартизованные средства измерений не подвергаются государственным испытаниям (поверкам), а подлежат метрологическим аттестациям.

По степени автоматизации средства измерений делят:

  • 1) на автоматические средства измерений , производящие в автоматическом режиме все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала;
  • 2) автоматизированные средства измерений, производящие в автоматическом режиме одну или часть измерительных операций;
  • 3) неавтоматические средства измерений, не имеющие устройств для автоматического выполнения измерений и обработки их результатов (рулетка, теодолит и т.д.).

По конструктивному исполнению средства измерения делятся на: меры; измерительные преобразователи; измерительные приборы; измерительные установки; измерительно- информационные системы (рис. 4.4).

Рис. 4.4.

Мера – средство измерений, предназначенное для воспроизведения и (или) хранения физической величины заданного размера. Мера выступает в качестве носителя единицы физической величины и служит основой для измерений. К мерам относятся гири, концевые меры длины, нормальные элементы (меры ЭДС); кварцевый резонатор (мера частоты электрических колебаний). Меры, воспроизводящие физическую величину одного размера, называют однозначными. Меры, которые воспроизводят физическую величину разных размеров, называют многозначными. Примером многозначной меры является миллиметровая линейка, которая воспроизводит не только миллиметровые, но и сантиметровые размеры длины.

Меры могут составлять наборы или магазины мер. Набор мер представляет собой комплект однородных мер разного размера, предназначенных для применения в различных сочетаниях. Например, набор разновесов.

Магазин мер – это набор мер, в котором меры конструктивно объединены в единое устройство. Соединение мер может осуществляться автоматически или вручную. Примером магазина мер может служить магазин электрических сопротивлений.

Измерительный преобразователь предназначен для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному наблюдению человеком (оператором).

Измеряемая (преобразуемая) величина, поступающая на измерительный преобразователь, называется входной величиной, преобразованная величина – выходной. Соотношение между входной и выходной величинами, которое может быть представлено формулой, таблицей, графиком, называется функцией преобра:ювания и является для измерительного преобразователя основной метрологической характеристикой.

Самым распространенным средством измерений является первичный измерительный преобразователь. Например, первичный преобразователь неэлектрической величины в электрическую. Первичные измерительные преобразователи не изменяют рода физической величины, а служат лишь для изменения размера измеряемой величины (например, делители или усилители напряжения). Часто измерительные преобразователи встраиваются в измерительный прибор.

Часть первичного преобразователя, воспринимающая измерительный сигнал на его входе, называется чувствительным элементом, или сенсором.

Первичный измерительный преобразователь, конструктивно оформленный как обособленное средство измерений (без отсчетного устройства) с нормированной функцией преобразования, называется датчиком. Например: датчик давления, датчик температуры, датчик скорости и т.д.

Вторичными (промежуточными ) измерительными преобразователями называются преобразователи, расположенные в измерительной цепи после первичного преобразователя и обычно по измеряемой (преобразуемой) величине однородные с ним.

По характеру преобразования измерительные преобразователи разделяются на аналоговые, аналого-цифровые, цифрово-аналоговые, цифровые. Цифровые преобразователи служат для изменения формата цифрового сигнала.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия человеком (оператором).

Конструктивно измерительные приборы представляют собой совокупность первичных и промежуточных преобразователей.

Особое место занимают приборы прямого действия. Они преобразуют измеряемую величину, как правило, без изменения ее рода и отображают ее на показывающем устройстве, которое проградуировано в единицах этой величины. Например, амперметр, вольтметр и пр.

Более точными являются приборы сравнения, которые предназначены для сравнения измеряемых величин с величинами, значения которых известны. Сравнение осуществляется с помощью компенсационных цепей прибора. Например, измерение массы осуществляется через установку эталонных гирь на равноплечных весах.

Измерительные приборы подразделяются на аналоговые и цифровые. В соответствии с уравнением измерений (4.1) значение величины равно произведению ее числового значения на размер единицы измерения. Информация о числовом значении физической величины, называемая измерительной информацией, в процессе измерений передается с помощью тех или иных сигналов.

В аналоговых приборах устанавливается прямая связь между значением измеряемой величины и значением сигнала физической величины. Например, в ртутном термометре высота столбика ртути соответствует конкретному значению температуры. При этом, очевидно, используется не само числовое значение, а аналоговая величина.

В цифровых измерительных приборах сигналы измерительной информации подвергаются дискретизации и передаются для отображения в виде отдельных кратковременных импульсов, являющихся носителями измерительной информации.

По способу записи измеряемой величины регистрирующие измерительные приборы делятся на самопишущие и печатающие. В самопишущих приборах запись показаний представляется в графическом виде (например, осциллограф), в печатающих – в числовой форме.

Измерительная установка – совокупность функционально объединенных средств измерений, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного наблюдения человеком и расположенная в одном месте.

Измерительная установка может включать в себя меры, измерительные приборы и преобразователей, а также различные вспомогательные устройства.

Измерительно-информационная система – совокупность средств измерений, соединенных между собой каналами связи и предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления.

По метрологическому назначению средства измерений подразделяются на два вида: рабочие средства измерений и эталоны.

Рабочие средства измерений (далее РСИ) предназначены для измерений параметров и характеристик объектов контроля и измерений. РСИ являются самыми многочисленными и широко применяемыми. Так, к РСИ относят электросчетчик, применяемый для измерения электрической энергии; теодолит – для измерения плоских углов; нутромер – для измерения малых длин (диаметров отверстий); термометр – для измерения температуры; измерительная система теплоэлектростанции, позволяющая получить измерительную информацию о ряде физических величин в разных энергоблоках.

Эталоны предназначены для воспроизведения и хранения единицы величины (кратных или дольных значений единицы) с целью передачи ее размера другим средством измерения.

По общему назначению средства измерений могут использоваться для проведения поверочных мероприятий, калибровки или для осуществления технических измерений.

По уровню стандартизации средства измерений подразделяются на:

. стандартизованные, изготовленные в соответствии с требованиями государственного или отраслевого стандарта;

. нестандартизованные (уникальные), предназначенные для решения специальной измерительной задачи, в стандартизации требований к которым нет необходимости.

Основная масса СИ являются стандартизованными. Они серийно выпускаются промышленными предприятиями и в обязательном порядке подвергаются государственным испытаниям. Нестандартизованные средства измерений разрабатываются специализированными научно-исследовательскими организациями и выпускаются единичными экземплярами. Они не проходят государственных испытаний, их характеристики определяются при метрологической аттестации.

По отношению к измеряемой физической величине средства измерений делятся на:

. основные — это СИ той физической величины, значение которой необходимо получить в соответствии с измерительной задачей;

. вспомогательные — это СИ той физической величины, влияние которой на основное средство измерений или объект измерения необходимо учесть для получения результатов измерения требуемой точности.


Классификация по роли в процессе измерения и выполняемым функциям является основной и представлена на рис. 1. Элементы, составляющие данную классификацию, рассмотрены в последующих разделах.

Рис. Классификация средств измерений по их роли в процессе измерения и выполняемым функциям.

Элементарные средства измерений предназначены для реализации отдельных операций прямого измерения. К ним относятся меры, устройства сравнения и измерительные преобразователи. Каждое из них, взятое по отдельности, не может осуществить операцию измерения.

Мера — это средство измерений, предназначенное для воспроизведения и (или) хранения ФВ одного или нескольких размеров. значения которых выражены в установленных единицах и известны с необходимой точностью.

Операцию воспроизведения величины заданного размера можно формально представить как преобразование цифрового кода N в заданную физическую величину Х м, основанное на единице данной физической величины [Q]. Поэтому уравнение преобразования меры запишется в виде Х м = N [Q].

Выходом меры является квантованная аналоговая величина Х м заданного размера, а входом следует считать числовое значение величины N (рис.1)

Рис. 1 Обозначение меры в структурных схемах (а) и функция преобразования многозначной меры (б)

Меры подразделяют на следующие типы:

. однозначные, воспроизводящие физическую величину одного размера, например: гиря 1 кг, плоскопараллельная концевая мера 100 мм, конденсатор постоянной емкости, нормальный элемент;

. многозначные, воспроизводящие ФВ разных размеров, например: конденсатор переменной емкости, штриховая мера длины.

Кроме этого, различают наборы мер, магазины мер, установочные, встроенные и ввозимые меры.

Степень совершенства меры определяется постоянством размера каждой ступени квантования [Q] и степенью многозначности, т.е. числом N воспроизводимых известных значений ее выходной величины. С наиболее высокой точностью посредством мер воспроизводятся основные физические величины: длина, масса, частота, напряжение и ток.

Устройство сравнения (компаратор) — это средство измерений, дающее возможность сравнивать друг с другом меры однородных величин или же показания измерительных приборов. Примерами могут служить: рычажные весы, на одну чашку которых устанавливается образцовая гиря, а на другую — поверяемая; градуировочная жидкость для сличения показаний образцового и рабочего ареометров; тепловое поле, создаваемое термостатом для сравнения показаний термометров. Во многих относительно простых СИ роль компаратора выполняют органы чувств человека, главным образом зрение, например при сравнении отклонения указателя прибора и числа делений, нанесенных на его шкале.

Особенно широкое распространение компараторы получили в современной электронной технике, где они используются для срав-нения напряжений и токов. Для этой цели был разработан специальный тип интегральных микросхем. Сравнение, выполняемое компаратором, может быть одно- и разновременным. Первое из них используется гораздо чаще. В электронных компараторах оно реализуется путем последовательного соединения вычитающего устройства (ВУ), формирующего разность входных сигналов (X 1 —Х 2), и усилителя переменного напряжения с большим коэффициентом усиления (усилителя-ограничителя УО), выполняющего функции индикатора знака разности. Выходной сигнал УО равен его положительному напряжению питания (принимаемого за логическую единицу), если разность (Х 1 -Х 2) >0, и отрицательному напряжению питания (принимаемому за логический нуль), если (Х 1 -Х 2)<0.

Рис 2. Структурная схема компаратора (а) и его функция преобразования (б)

Функция преобразования идеального компаратора, показанная на рис.2,б, описывается уравнением

U n ÷ 1 при X 1 > X 2

U n ÷ 1 при X 1 > X 2

Степень совершенства компаратора определяется минимально возможным порогом чувствительности Δ n , а также его быстродействием — временем переключения из одного состояния в другое. У идеального компаратора порог Δ n и время переключения равны нулю. В реальном компараторе наличие порога приводит к возникновению аддитивной погрешности.

Измерительный преобразователь (ИП) предназначен для выполнения одного измерительного преобразования. Его работа протекает в условиях, когда помимо основного сигнала X, связанного с измеряемой величиной, на него воздействуют множество других сигналов Z i , рассматриваемых в данном случае как помехи (рис.3.а)

Рис.3. Структурная схема измерительного преобразователя (а) и его функции

преобразования (б)

Важнейшей характеристикой ИП является функция (уравнение) преобразования

(рис.3,б), которая описывает статические свойства преобразователя и в общем случае записывается в виде Y = F(Х, Z i).

В подавляющем большинстве случаев стремятся иметь линейную функцию преобразования. Функция Y(Х) идеального ИП при отсутствии помех описывается уравнением Y = kХ. Она линейна, безынерционна, стабильна и проходит через начало координат. Реальная передаточная функция в статическом режиме имеет вид

Y = k(1+γ)Х+Δ 0 +Δ и может отличаться от идеальной смещением нуля Δ 0 , наклоном γ и нелинейной составляющей Δ. Такие отклонения реальной передаточной функции ИП приводят к возникновению аддитивной, мультипликативной и нелинейной составляющих погрешности.

Измерительные преобразователи классифицируются по ряду признаков.

По местоположению в измерительной цепи преобразователи делятся на первичные и промежуточные. Первичный преобразователь — это такой ИП, на который непосредственно воздействует измеряемая физическая величина, т.е. он является первым в измерительной цепи средством измерений. Промежуточные преобразователи располагаются в измерительной цепи после первичного. Зачастую конструктивно обособленные первичные измерительные преобразователи называют датчиками. Например, резистивный датчик перемещения — это первичный преобразователь, в котором перемещение преобразуется в изменение активного сопротивления. Детально первичные измерительные преобразователи рассмотрены в специальной научной литературе.

 

 

Это интересно: