→ Метод крамера гаусса матричный. Решить систему уравнений методами Крамера, Гаусса и с помощью обратной матрицы. Решение системы с помощью обратной матрицы

Метод крамера гаусса матричный. Решить систему уравнений методами Крамера, Гаусса и с помощью обратной матрицы. Решение системы с помощью обратной матрицы

Метод Крамера или так называемое правило Крамера – это способ поиска неизвестных величин из систем уравнений. Его можно использовать только если число искомых значений эквивалентно количеству алгебраических уравнений в системе, то есть образуемая из системы основная матрица должна быть квадратной и не содержать нулевых строчек, а также если её детерминант не должен являться нулевым.

Теорема 1

Теорема Крамера Если главный определитель $D$ основной матрицы, составленной на основе коэффициентов уравнений, не равен нулю, то система уравнений совместна, причём решение у неё существует единственное. Решение такой системы вычисляется через так называемые формулы Крамера для решения систем линейных уравнений: $x_i = \frac{D_i}{D}$

В чем заключается метод Крамера

Суть метода Крамера в следующем:

  1. Чтобы найти решение системы методом Крамера, первым делом вычисляем главный определитель матрицы $D$. Когда вычисленный детерминант основной матрицы при подсчёте методом Крамера оказался равен нулю, то система не имеет ни одного решения или имеет нескончаемое количество решений. В этом случае для нахождения общего или какого-либо базисного ответа для системы рекомендуется применить метод Гаусса.
  2. Затем нужно заменить крайний столбец главной матрицы на столбец свободных членов и высчитать определитель $D_1$.
  3. Повторить то же самое для всех столбцов, получив определители от $D_1$ до $D_n$, где $n$ - номер крайнего справа столбца.
  4. После того как найдены все детерминанты $D_1$...$D_n$, можно высчитать неизвестные переменные по формуле $x_i = \frac{D_i}{D}$.

Приёмы для вычисления определителя матрицы

Для вычисления определителя матрицы с размерностью больше чем 2 на 2, можно использовать несколько способов:

  • Правило треугольников, или правило Саррюса, напоминающее это же правило. Суть метода треугольников в том, что при вычислении определителя произведения всех чисел, соединённых на рисунке красной линией справа, записываются со знаком плюс, а все числа, соединённые аналогичным образом на рисунке слева – со знаком минус. B то, и другое правило подходит для матриц размером 3 х 3. В случае же правила Саррюса сначала переписывается сама матрица, а рядом с ней рядом переписываются ещё раз её первый и второй столбец. Через матрицу и эти дополнительные столбцы проводятся диагонали, члены матрицы, лежащие на главной диагонали или на параллельной ей записываются со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей - со знаком минус.

Рисунок 1. Правило треугольников для вычисления определителя для метода Крамера

  • С помощью метода, известного как метод Гаусса, также иногда этот метод называют понижением порядка определителя. В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа, стоящие на главной диагонали. Следует помнить, что при таком поиске определителя нельзя домножать или делить строчки или столбцы на числа без вынесения их как множителя или делителя. В случае поиска определителя возможно только вычитать и складывать строки и столбы между собой, предварительно помножив вычитаемую строку на ненулевой множитель. Также при каждой перестановке строчек или столбцов матрицы местами следует помнить о необходимости смены конечного знака у матрицы.
  • При решении методом Крамера СЛАУ с 4 неизвестными, лучше всего будет применять именно метод Гаусса для поиска и нахождения определителей или опредлять детерминант через поиск миноров.

Решение систем уравнений методом Крамера

Применим метод Крамера для системы из 2 уравнений и двумя искомыми величинами:

$\begin{cases} a_1x_1 + a_2x_2 = b_1 \\ a_3x_1 + a_4x_2 = b_2 \\ \end{cases}$

Отобразим её в расширенной форме для удобства:

$A = \begin{array}{cc|c} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_1 \\ \end{array}$

Найдём определитель основной матрицы, также называемый главным определителем системы:

$D = \begin{array}{|cc|} a_1 & a_2 \\ a_3 & a_4 \\ \end{array} = a_1 \cdot a_4 – a_3 \cdot a_2$

Если главный определитель не равен нулю, то для решения слау методом Крамера необходимо высчитать ещё парочку определителей от двух матриц с заменёнными столбцами основной матрицы на строчку свободных членов:

$D_1 = \begin{array}{|cc|} b_1 & a_2 \\ b_2 & a_4 \\ \end{array} = b_1 \cdot a_4 – b_2 \cdot a_4$

$D_2 = \begin{array}{|cc|} a_1 & b_1 \\ a_3 & b_2 \\ \end{array} = a_1 \cdot b_2 – a_3 \cdot b_1$

Теперь найдём неизвестные $x_1$ и $x_2$:

$x_1 = \frac {D_1}{D}$

$x_2 = \frac {D_2}{D}$

Пример 1

Метод Крамера для решения СЛАУ с основной матрицей 3 порядка (3 x 3) и тремя искомыми.

Решите систему уравнений:

$\begin{cases} 3x_1 – 2x_2 + 4x_3 = 21 \\ 3x_1 +4x_2 + 2x_3 = 9\\ 2x_1 – x_2 - x_3 = 10 \\ \end{cases}$

Сосчитаем главный детерминант матрицы пользуясь вышеизложенным под пунктом номер 1 правилом:

$D = \begin{array}{|ccc|} 3 & -2 & 4 \\3 & 4 & -2 \\ 2 & -1 & 1 \\ \end{array} = 3 \cdot 4 \cdot (-1) + 2 \cdot (-2) \cdot 2 + 4 \cdot 3 \cdot (-1) – 4 \cdot 4 \cdot 2 – 3 \cdot (-2) \cdot (-1) - (-1) \cdot 2 \cdot 3 = - 12 – 8 -12 -32 – 6 + 6 = - 64$

А теперь три других детерминанта:

$D_1 = \begin{array}{|ccc|} 21 & 2 & 4 \\ 9 & 4 & 2 \\ 10 & 1 & 1 \\ \end{array} = 21 \cdot 4 \cdot 1 + (-2) \cdot 2 \cdot 10 + 9 \cdot (-1) \cdot 4 – 4 \cdot 4 \cdot 10 – 9 \cdot (-2) \cdot (-1) - (-1) \cdot 2 \cdot 21 = - 84 – 40 – 36 – 160 – 18 + 42 = - 296$

$D_2 = \begin{array}{|ccc|} 3 & 21 & 4 \\3 & 9 & 2 \\ 2 & 10 & 1 \\ \end{array} = 3 \cdot 9 \cdot (- 1) + 3 \cdot 10 \cdot 4 + 21 \cdot 2 \cdot 2 – 4 \cdot 9 \cdot 2 – 21 \cdot 3 \cdot (-1) – 2 \cdot 10 \cdot 3 = - 27 + 120 + 84 – 72 + 63 – 60 = 108$

$D_3 = \begin{array}{|ccc|} 3 & -2 & 21 \\ 3 & 4 & 9 \\ 2 & 1 & 10 \\ \end{array} = 3 \cdot 4 \cdot 10 + 3 \cdot (-1) \cdot 21 + (-2) \cdot 9 \cdot 2 – 21 \cdot 4 \cdot 2 - (-2) \cdot 3 \cdot 10 - (-1) \cdot 9 \cdot 3 = 120 – 63 – 36 – 168 + 60 + 27 = - 60$

Найдём искомые величины:

$x_1 = \frac{D_1} {D} = \frac{- 296}{-64} = 4 \frac{5}{8}$

$x_2 = \frac{D_1} {D} = \frac{108} {-64} = - 1 \frac {11} {16}$

$x_3 = \frac{D_1} {D} = \frac{-60} {-64} = \frac {15} {16}$


2. Решение систем уравнений матричным методом (при помощи обратной матрицы).
3. Метод Гаусса решения систем уравнений.

Метод Крамера.

Метод Крамера применяется для решения систем линейных алгебраических уравнений (СЛАУ ).

Формулы на примере системы из двух уравнений с двумя переменными.
Дано: Решить методом Крамера систему

Относительно переменных х и у .
Решение:
Найдем определитель матрицы, составленный из коэффициентов системы Вычисление определителей. :




Применим формулы Крамера и найдем значения переменных:
и .
Пример 1:
Решить систему уравнений:

относительно переменных х и у .
Решение:


Заменим в этом определителе первый столбец столбцом коэффициентов из правой части системы и найдем его значение:

Сделаем аналогичное действие, заменив в первом определителе второй столбец:

Применим формулы Крамера и найдем значения переменных:
и .
Ответ:
Замечание: Этим методом можно решать системы и большей размерности.

Замечание: Если получается, что , а делить на ноль нельзя, то говорят, что система не имеет единственного решения. В этом случае система имеет или бесконечно много решений или не имеет решений вообще.

Пример 2 (бесконечное количество решений):

Решить систему уравнений:

относительно переменных х и у .
Решение:
Найдем определитель матрицы, составленный из коэффициентов системы:

Решение систем методом подстановки.

Первое из уравнений системы — равенство, верное при любых значениях переменных (потому что 4 всегда равно 4). Значит, остается только одно уравнение. Это уравнение связи между переменными .
Получили, решением системы являются любые пары значений переменных, связанных между собой равенством .
Общее решение запишется так:
Частные решения можно определять выбирая произвольное значение у и вычисляя х по этому равенству связи.

и т.д.
Таких решений бесконечно много.
Ответ: общее решение
Частные решения:

Пример 3 (решений нет, система несовместна):

Решить систему уравнений:

Решение:
Найдем определитель матрицы, составленный из коэффициентов системы:

Применять формулы Крамера нельзя. Решим эту систему методом подстановки

Второе уравнение системы — равенство, неверное ни при каких значениях переменных (конечно же, так как -15 не равно 2). Если одно из уравнений системы не верно ни при каких значениях переменных, то и вся системы не имеет решений.
Ответ: решений нет

Пусть дана система трех линейных уравнений:

Для решения системы линейных уравнений методом Крамера из коэффициентов при неизвестных составляется главный определитель системы . Для системы (1) главный определитель имеет вид
.

Далее составляются определители по переменным
,,. Для этого в главном определителе вместо столбца коэффициентов при соответствующей переменной записывается столбец свободных членов, то есть

,
,
.

Тогда решение системы находится по формулам Крамера

,
,

Следует отметить, что система имеет единственное решение
, если главный определитель
.
Если же
и
= 0,= 0,= 0, то система имеет бесчисленное множество решений, найти которые по формулам Крамера нельзя. Если же
и
0, или0,или0, то система уравнений несовместна, то есть решений не имеет.

Пример


Решение:

1) Составим и вычислим главный определитель системы, состоящий из коэффициентов при неизвестных.

.

Следовательно, система имеет единственное решение.

2) Составим и вычислим вспомогательные определители, заменяя соответствующий столбец в  столбцом из свободных членов.

По формулам Крамера находим неизвестные:

,
,
.

Сделаем проверку, чтобы убедиться в правильности решения

Т.е.
.

, т.е.

, т.е.

Ответ: .

Пример

Решить систему уравнений методом Крамера:

Решение:

1) Составим и вычислим главный определитель системы из коэффициентов при неизвестных:

.

Следовательно, система не имеет единственного решения.

2) Составим и вычислим вспомогательные определители, заменяя соответствующий столбец в  столбцом из свободных членов:

,
, следовательно, система несовместна.

Ответ: система несовместна .

Метод Гаусса

Метод Гаусса состоит из двух этапов. Первый этап заключается в последовательном исключении переменных из уравнений системы при помощи действий, не нарушающих равносильности системы. Например, рассмотрим два первых уравнения системы (1).

(1)

Необходимо путем сложения этих двух уравнений получить уравнение, в котором отсутствует переменная . Умножим первое уравнение на, а второе на (
) и сложим полученные уравнения

Заменим коэффициент перед y , z и свободный член на ,исоответственно, получим новую пару уравнений

Заметим, что во втором уравнении отсутствует переменная x .

Проведя аналогичные действия над первым и третьим уравнениями системы (1), а затем над полученными в результате сложения вторым и третьим уравнениями, преобразуем систему (1) к виду


(2)

Такой результат возможен, если система имеет единственное решение. В этом случае решение находится при помощи обратного хода метода Гаусса (второй этап). Из последнего уравнения системы (2) находим неизвестную переменную z , затем из второго уравнения находим y , а x соответственно из первого, подставляя в них уже найденные неизвестные.

Иногда в результате сложения двух уравнений суммарное уравнение может принять один из видов:

А)
, где
. Это означает, что решаемая система несовместна.

Б) , то есть
. Такое уравнение исключается из системы, в результате число уравнений в системе становится меньше, чем число переменных, и система имеет бесчисленное множество решений, нахождение которых будет показано на примере.

Пример


Решение:

Рассмотрим следующий способ осуществления первого этапа решения методом Гаусса. Запишем три строки коэффициентов при неизвестных и свободных членов, соответствующих трем уравнениям системы. Свободные члены отделим от коэффициентов вертикальной линией, а под третьей строкой проведем горизонтальную прямую.

Первую строку, которая соответствует первому уравнению системы, обведем – коэффициенты в этом уравнении останутся неизменными. Вместо второй строки (уравнения) надо получить строку (уравнение), где коэффициент при равен нулю. Для этого все числа первой строки умножим на (–2) и сложим с соответствующими числами второй строки. Полученные суммы запишем под горизонтальной чертой (четвертая строка). Для того чтобы вместо третьей строки (уравнения) также получить строку (уравнение), в которой коэффициент приравен нулю, умножим все числа первой строки на (–5) и сложим с соответствующими числами третьей строки. Полученные суммы запишем пятой строкой и проведем под ней новую горизонтальную черту. Четвертую строку (или пятую – по выбору) обведем. Выбирается строка с меньшими коэффициентами. В этой строке коэффициенты останутся неизменными. Вместо пятой строки надо получить строку, где уже два коэффициента равны нулю. Умножим четвертую строку на 3 и сложим с пятой. Сумму запишем под горизонтальной чертой (шестая строка) и обведем ее.

Все описанные действия изображены в таблице 1 при помощи арифметических знаков и стрелок. Обведенные в таблице строки запишем снова в виде уравнений (3) и, применив обратный ход метода Гаусса, найдем значения переменных x , y и z .

Таблица 1

Восстанавливаем систему уравнений, полученную в результате наших преобразований:

(3)

Обратный ход метода Гаусса

Из третьего уравнения
находим
.

Во второе уравнение системы
подставим найденное значение
, получим
или
.

Из первого уравнения
, подставляя уже найденные значения переменных, получаем
, то есть
.

Чтобы убедиться в правильности решения, проверку необходимо сделать во всех трех уравнениях системы.

Проверка:

, получим

Получим

Получим

значит, система решена верно.

Ответ:
,
,
.

Пример

Решить систему методом Гаусса:

Решение:

Порядок действий в этом примере аналогичен порядку в предыдущем примере, а конкретные действия указаны в таблице 2.

В результате преобразований получим уравнение вида , следовательно, заданная система несовместна.

Ответ: система несовместна .

Пример

Решить систему методом Гаусса:

Решение:

Таблица 3

В результате преобразований получим уравнение вида , которое исключается из рассмотрения. Таким образом, имеем систему уравнений, в которой число неизвестных 3, а число уравнений 2.

Система имеет бесчисленное множество решений. Чтобы отыскать эти решения, введем одну свободную переменную. (Число свободных переменных всегда равно разности между числом неизвестных и числом уравнений, оставшихся после преобразования системы. В нашем случае 3 – 2 = 1).

Пусть
– свободная переменная.

Тогда из второго уравнения найдем
, откуда
, а затем найдемx из первого уравнения
или
.

Таким образом,
;
;
.

Сделаем проверку в уравнениях, которые не участвовали в нахождении и, то есть во втором и в третьем уравнениях первоначальной системы.

Проверка:

или , получаем
.

или , получаем
.

Система решена верно. Давая произвольной постоянной различные значения, будем получать различные значенияx , y и z .

Ответ:
;
;
.

В нашем калькуляторе вы бесплатно найдете решение системы линейных уравнений методом Крамера онлайн с подробным решением и даже с комплексными числами . Каждый определитель, использованный в расчетах, можно просмотреть отдельно, а также проверить точный вид системы уравнений, если вдруг определитель основной матрицы оказался равен нулю.

Подробнее о том, как пользоваться нашим онлайн калькулятором, вы можете прочитать в инструкции .

О методе

При решении системы линейных уравнений методом Крамера выполняются следующие шаги.

  1. Записываем расширенную матрицу.
  2. Находим определитель основной (квадратной) матрицы.
  3. Для нахождения i-ого корня подставляем столбец свободных членов в основную матрицу на i-ое место и находим ее определитель. Далее находим отношение полученного определителя к основному, это и есть очередное решение. Проделываем данную операцию для каждой переменной.
  4. В случае, если основной определитель матрицы равен нулю, то система уравнений либо несовместна, либо имеет бесконечное множество решений. К сожалению метод Крамера не позволяет более точно ответить на этот вопрос. Тут вам поможет

Методы Крамера и Гаусса – одни из самых популярных методов решения СЛАУ . К тому же, в ряде случаев целесообразно использовать именно конкретные методы. Сессия близка, и сейчас самое время повторить или освоить их с нуля. Сегодня разбираемся с решением методом Крамера. Ведь решение системы линейных уравнений методом Крамера - весьма полезный навык.

Системы линейных алгебраических уравнений

Система линейных алгебраических уравнений – система уравнений вида:

Набор значений x , при котором уравнения системы обращаются в тождества, называется решением системы, a и b – вещественные коэффициенты. Простенькую систему, состоящую из двух уравнений с двумя неизвестными, можно решить в уме либо выразив одну переменную через другую. Но переменных (иксов) в СЛАУ может быть гораздо больше двух, и здесь простыми школьными манипуляциями не обойтись. Что же делать? Например, решать СЛАУ методом Крамера!

Итак, пусть система состоит из n уравнений с n неизвестными.

Такую систему можно переписать в матричном виде

Здесь A – основная матрица системы, X и B , соответственно, матрицы-столбцы неизвестных переменных и свободных членов.

Решение СЛАУ методом Крамера

Если определитель главной матрицы не равен нулю (матрица невырожденная), систему можно решать по методу Крамера.

Согласно методу Крамера, решение находится по формулам:

Здесь дельта – определитель главной матрицы, а дельта x n-ное – определитель, полученный из определителя главной матрицы путем заменой n-ного столбца на столбец свободных членов.

В этом и заключается вся суть метода Крамера. Подставляя найденные по вышеприведенным формулам значения x в искомую систему, убеждаемся в правильности (или наоборот) нашего решения. Чтобы Вы быстрее уловили суть, приведем ниже пример подробного решения СЛАУ методом Крамера:

Даже если у Вас не получится с первого раза, не расстраивайтесь! Немного практики, и Вы начнете щелкать СЛАУ как орешки. Более того, сейчас совершенно необязательно корпеть над тетрадью, решая громоздкие выкладки и исписывая стержень. Можно легко решить СЛАУ методом Крамера в режиме онлайн, лишь подставив в готовую форму коэффициенты. Испробовать онлайн калькулятор решения методом Крамера можно, к примеру, на этом сайте .


А если система оказалась упорной и не сдается, Вы всегда можете обратиться за помощью к нашим авторам, например, чтобы купить конспект . Будь в системе хоть 100 неизвестных, мы обязательно решим ее верно и точно в срок!

 

 

Это интересно: