→ Коэффициент нелинейных искажений 3 мощность. Измерение коэффициента нелинейных искажений. Паспортная шумовая мощность

Коэффициент нелинейных искажений 3 мощность. Измерение коэффициента нелинейных искажений. Паспортная шумовая мощность

Нелинейными искажениями называют искажения сигнала, обусловленные нелинейностью зависимости между вторичным и первичным сигналами в стационарном режиме. В результате нелинейных безынерционных искажений входного сигнала синусоидальной формы получается выходной сигнал сложной формы y = y0 + v1x + v2x2 + v3x3 + ... где: x - входная величина; y0 - постоянная составляющая; v1 - линейный коэффициент усиления; v2, v3 ... - коэффициенты нелинейных искажений.

В системе с нелинейной передаточной характеристикой возникают спектральные составляющие, которых не было на входе - продукты нелинейности. При подаче на вход такой системы сигнала с единственной частотой f1 на выходе появятся составляющие с частотами f1, 2f1, 3f1 и т.д. Если же на вход подается сигнал, состоящий из нескольких частот f1, f2, f3, ..., то на выходе системы кроме гармонических составляющих дополнительно появятся и так называемые "комбинационные составляющие" с частотами n1f1 ± n2f2 ± n3f3 ± ..., где n=1, 2, 3, ... При подаче звуков со сплошным спектром получается также сплошной спектр, но с измененной формой огибающей спектра.

Нелинейные искажения принято оценивать коэффициентом нелинейных искажений, представляющим собой отношение эффективных значений гармоник к эффективному значению суммарного выходного сигнала и измеряется в процентах. Здесь An - амплитуды составляющих с частотами nf. Приведенная рядом упрощенная формула справедлива для случаев, когда искажения невелики (К<=10%). Различают два типа нелинейности: степенную и нелинейность из-за ограничения амплитуды. Последняя делится на ограничение сверху и ограничение снизу (центральное). При первом виде ограничения искажаются только громкие сигналы, при втором - все сигналы, но более слабые искажаются сильнее, чем громкие. Нелинейность искажения гармонического вида и комбинационных частот ощущается как дребезжание, переходящее в хрипы при значительном искажении на высоких частотах. Нелинейные искажения в виде разностных комбинационных частот вызывают ощущение модуляции передачи. При сужении полосы частот нелинейные искажения становятся менее заметными. Линейные искажения изменяют амплитудные и фазовые соотношения между имеющимися спектральными компонентами сигнала и за счет этого искажают его временную структуру. Такие изменения воспринимаются как искажения тембра или «окрашивание» звука.
При звукопередаче первичные соотношения между частотными компонентами звука должны быть сохранены. В связи с этим, качество любого участка звукового канала оценивается его амплитудно-частотной (сокращенно частотной) характеристикой, для обозначения которой часто используют аббревиатуру АЧХ. Под АЧХ понимают график зависимости коэффициента передачи от частоты сигналов, подаваемых на вход данного участка канала или отдельного звукотехнического устройства. Коэффициент передачи - это отношение величин сигналов на входе усилителя и его выходе.
Частотная характеристика тракта передачи (частотная зависимость коэффициента передачи) изменяет соотношения между амплитудами частотных составляющих. Это приводит к субъективному ощущению изменения тембра. Показателем степени частотных искажений, возникающих в каком-либо устройстве, служит неравномерность его амплитудно-частотной характеристики, количественным показателем на какой-либо конкретной частоте спектра сигнала является коэффициент частотных искажений.

Нелинейные искажения вызваны нелинейностью системы обработки и передачи сигнала. Эти искажения вызывают появление в частотном спектре выходного сигнала составляющих, отсутствующих во входном сигнале. Нелинейные искажения представляют собой изменения формы колебаний, проходящих через электрическую цепь (например, через усилитель или трансформатор), вызванные нарушениями пропорциональности между мгновенными значениями напряжения на входе этой цепи и на ее выходе. Это происходит, когда характеристика выходного напряжения нелинейно зависит от входного. Количественно нелинейные искажения оцениваются коэффициентом нелинейных искажений или коэффициентом гармоник. Типовые значения КНИ: 0 % — синусоида; 3 % — форма, близкая к синусоидальной; 5 % — форма, приближенная к синусоидальной (отклонения формы уже заметны на глаз); до 21 % — сигнал трапецеидальной или ступенчатой формы; 43 % — сигнал прямоугольной формы.

Благодаря торговым сетям и интернет магазинам разнообразие предлагаемой к продаже аудиоаппаратуры зашкаливает за все разумные пределы. Каким образом выбрать аппарат, удовлетворяющий вашим потребностям к качеству, существенно не переплатив?
Если вы не аудиофил и подбор аппаратуры не является для вас смыслом жизни, то самый простой путь - уверенно ориентироваться в технических характеристиках звукоусилительной аппаратуры и научиться извлекать полезную информацию между строк паспортов и инструкций, критически относясь к щедрым обещаниям. Если вы не ощущаете разницы между dB и dBm, номинальную мощность не отличаете от PMPO и желаете наконец узнать, что такое THD, также сможете найти интересное под катом.

Краткое содержание статьи

Коэффициент усиления. Зачем нам логарифмы и что такое децибелы?
Громкость звука. Чем отличаются dB от dBm?
Разделяй и властвуй - раскладываем сигнал в спектр.
Линейные искажения и полоса пропускания.
Нелинейные искажения. КНИ, КГИ, TDH.
Амплитудная характеристика. Совсем коротко о шумах и помехах.
Стандарты выходной мощности УНЧ и акустики.
Практика - лучший критерий истины. Разборки с аудиоцентром.
Чайник дёгтя в банке мёда.

Я надеюсь что материалы данной статьи будут полезны для понимания следующей, которая имеет намного более сложную тему - «Перекрёстные искажения и обратная связь, как один из их источников».

Коэффициент усиления. Зачем нам логарифмы и что такое децибелы?

Одним из основных параметров усилителя является коэффициент усиления - отношение выходного параметра усилителя к входному. В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению, току или мощности:

Коэффициент усиления по напряжению

Коэффициент усиления по току

Коэффициент усиления по мощности

Коэффициент усиления УНЧ может быть очень большим, ещё большими значениями выражаются усиление операционных усилителей и радиотрактов различной аппаратуры. Цифрами с большим количеством нулей не слишком удобно оперировать, ещё сложнее отображать на графике различного рода зависимости имеющие величины, отличающиеся между собой в тысячу и более раз. Удобный выход из положения - представление величин в логарифмическом масштабе. В акустике это вдвойне удобно, поскольку ухо имеет чувствительность близкую к логарифмической.
Поэтому коэффициент усиления часто выражают в логарифмических единицах - децибелах (русское обозначение: дБ; международное: dB)

Изначально дБ использовался для оценки отношения мощностей, поэтому величина, выраженная в дБ, предполагает логарифм отношения двух мощностей, а коэффициент усиления по мощности вычисляется по формуле:

Немного другим образом обстоит дело с «неэнергетическими» величинами. Для примера возьмём ток и выразим через него мощность, воспользовавшись законом Ома:

тогда величина выраженная в децибелах через ток будет равна следующему выражению:

Аналогично и для напряжения. В результате получаем следующие формулы для вычисления коэффициентов усиления:

Коэффициент усиления по току в дБ:

Коэффициент усиления по напряжению в дБ:

Громкость звука. Чем отличаются dB от dBm?

В акустике «уровень интенсивности» или просто громкость звука L тоже измеряют в децибелах, при этом данный параметр является не абсолютным, а относительным! Всё потому, что сравнение ведётся с минимальным порогом слышимости человеческим ухом звука гармонического колебания - амплитудой звукового давления 20 мкПа. Поскольку интенсивность звука пропорциональна квадрату звукового давления можно написать:

где не ток, а интенсивность звукового давления звука с частотой 1 кГц, который приближенно соответствует порогу слышимости звука человеком.

Таким образом, когда говорят, что громкость звука равна 20 дБ, это означает, что интенсивность звуковой волны в 100 раз превышает порог слышимости звука человеком.
Кроме этого, в радиотехнике чрезвычайно распространена абсолютная величина измерения мощности dBm (русское дБм), которая измеряется относительно мощности в 1 мВт. Мощность определяется на номинальной нагрузке (для профессиональной техники - обычно 10 кОм для частот менее 10 МГц, для радиочастотной техники - 50 Ом или 75 Ом). Например, «выходная мощность усилительного каскада составляет 13 дБм» (то есть мощность, выделяющаяся на номинальной для этого усилительного каскада нагрузке, составляет примерно 20 мВт).

Разделяй и властвуй - раскладываем сигнал в спектр.

Пора переходить к более сложной теме - оценке искажений сигнала. Для начала придётся сделать небольшое вступление и поговорить о спектрах. Дело в том, что в звукотехнике и не только принято оперировать сигналами синусоидальной формы. Они часто встречаются в окружающем мире, поскольку огромное количество звуков создают колебания тех или иных предметов. Кроме того, строение слуховой системы человека отлично приспособлено для восприятия синусоидальных колебаний.
Любое синусоидальное колебание можно описать формулой:

где длина вектора, амплитуда колебаний, - начальный угол (фаза) вектора в нулевой момент времени, - угловая скорость, которая равна:

Важно, что с помощью суммы синусоидальных сигналов с разной амплитудой, частотой и фазой, можно описать периодически повторяющиеся сигналы любой формы. Сигналы, частоты которых отличаются от основной в целое число раз, называются гармониками исходной частоты. Для сигнала с базовой частотой f, сигналы с частотами

будут являться чётными гармониками, а сигналы

нечётными гармониками

Давайте для наглядности изобразим график пилообразного сигнала.

Для точного представления его через гармоники потребуется бесконечное число членов.
На практике для анализа сигналов используют ограниченное число гармоник с наибольшей амплитудой. Наглядно посмотреть процесс построения пилообразного сигнала из гармоник можно на рисунке ниже.

А вот как формируется меандр, с точностью до пятидесятой гармоники…

Подробнее о гармониках можно почитать в замечательной статье habrahabr.ru/post/219337 пользователя dlinyj, а нам пора переходить наконец к искажениям.
Наиболее простым методом оценки искажений сигналов является подача на вход усилителя одного или суммы нескольких гармонических сигналов и анализ наблюдающихся гармонических сигналов на выходе.
Если на выходе усилителя присутствуют сигналы тех же гармоник, что и на входе, искажения считаются линейными, потому-что они сводятся к изменению амплитуды и фазы входного сигнала.
Нелинейные искажения добавляют в сигнал новые гармоники, что приводит к искажению формы входных сигналов.

Линейные искажения и полоса пропускания.

Коэффициент усиления К идеального усилителя не зависит от частоты, но в реальной жизни это далеко не так. Зависимость амплитуды от частоты называют амплитудно- частотной характеристикой - АЧХ и часто изображают в виде графика, где по вертикали откладывают коэффициент усиления по напряжению, а по горизонтали частоту. Изобразим на графике АЧХ типичного усилителя.

Снимают АЧХ, последовательно подавая на вход усилителя сигналы разных частот определённого уровня и измеряя уровень сигнала на выходе.
Диапазон частот ΔF , в пределах которого мощность усилителя уменьшается не более, чем в два раза от максимального значения, называют полосой пропускания усилителя .

Однако, на графике обычно откладывают коэффициент усиления по напряжению, а не по мощности. Если обозначить максимальный коэффициент усиления по напряжению, как , то в пределах полосы пропускания коэффициент не должен опускаться ниже чем:

Значения частоты и уровня сигналов, с которыми работает УНЧ, могут изменяться очень существенно, поэтому АЧХ обычно строят в логарифмических координатах, иногда его называют при этом ЛАЧХ.

Коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот отличающихся между собой в десять раз). Не правда ли так график выглядит не только симпатичнее, но и информативнее?
Усилитель не только неравномерно усиливает сигналы разных частот, но ещё и сдвигает фазу сигнала на разные значения, в зависимости от его частоты. Эту зависимость отражает фазочастотная характеристика усилителя.

При усилении колебаний только одной частоты, это вроде бы не страшно, но вот для более сложных сигналов приводит к существенным искажениям формы, хотя и не порождает новых гармоник. На картинке снизу показано как искажается двухчастотный сигнал.

Нелинейные искажения. КНИ, КГИ, TDH.


Нелинейные искажения добавляют в сигнал ранее не существовавшие гармоники и, в результате, изменяют исходную форму сигнала. Пожалуй самым наглядным примером таких искажений может служить ограничение синусоидального сигнала по амплитуде, изображённое ниже.

На левом графике показаны искажения, вызванные наличием дополнительной чётной гармоники сигнала - ограничение амплитуды одной из полуволн сигнала. Исходный синусоидальный сигнал имеет номер 1, колебание второй гармоники 2, а полученный искажённый сигнал 3. На правом рисунке показан результат действия третьей гармоники - сигнал «обрезан» c двух сторон.

Во времена СССР нелинейные искажения усилителя было принято выражать с помощью коэффициента гармонических искажений КГИ. Определялся он следующим образом - на вход усилителя подавался сигнал определённой частоты, обычно 1000 Гц. Затем производилось вычисление уровня всех гармоник сигнала на выходе. За КГИ брали отношение среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники - той самой, частота которой равна частоте входного синусоидального сигнала.

Аналогичный зарубежный параметр именуется как - total harmonic distortion for fundamental frequency.

Коэффициент гармонических искажений (КГИ или )

Такая методика будет работать только в том случае, если входной сигнал будет идеальным и содержать только основную гармонику. Это условие удаётся выполнить не всегда, поэтому в современной международной практике гораздо большее распространение получил другой параметр оценки степени нелинейных искажений - КНИ.

Зарубежный аналог - total harmonic distortion for root mean square.

Коэффициент нелинейных искажений (КНИ или )

КНИ - величина равная отношению среднеквадратичной суммы спектральных компонент выходного сигнала, отсутствующих в спектре входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала.
Как КНИ, так и КГИ относительные величины, которые измеряются в процентах.
Величины этих параметров связаны соотношением:

Для сигналов простой формы величина искажений может быть вычислена аналитически. Ниже приведены значения КНИ для наиболее распространённых в аудиотехнике сигналов (значение КГИ указано в скобках).

0 % (0%) - форма сигнала представляет собой идеальную синусоиду.
3 % (3 %) - форма сигнала отлична от синусоидальной, но искажения незаметны на глаз.
5 % (5 %) - отклонение формы сигнала от синусоидальной заметной на глаз по осциллограмме.
10 % (10 %) - стандартный уровень искажений, при котором считают реальную мощность (RMS) УМЗЧ, заметен на слух.
12 % (12 %) - идеально симметричный треугольный сигнал.
21 % (22 %) - «типичный» сигнал трапецеидальной или ступенчатой формы. 43 % (48 %) - идеально симметричный прямоугольный сигнал (меандр).
63 % (80 %) - идеальный пилообразный сигнал.

Ещё лет двадцать назад для измерения гармонических искажений низкочастотного тракта использовались сложные дорогостоящие приборы. Один из них СК6-13 изображён на рисунке ниже.

Сегодня с этой задачей гораздо лучше справляется внешняя компьютерная аудиокарта с комплектом специализированного ПО, общей стоимостью не превышающие 500USD.


Спектр сигнала на входе звуковой карты при тестировании усилителя низкой частоты.

Амплитудная характеристика. Совсем коротко о шумах и помехах.

Зависимость выходного напряжения усилителя от его входного, при фиксированной частоте сигнала (обычно 1000Гц), называется амплитудной характеристикой.
Амплитудная характеристика идеального усилителя представляет из себя прямую, проходящую через начало координат, поскольку коэффициент его усиления является постоянной величиной при любых входных напряжениях.
На амплитудной характеристике реального усилителя имеется, как минимум, три разных участка. В нижней части она не доходит до нуля, так как усилитель имеет собственные шумы, которые становятся на малых уровнях громкости соизмеримы с амплитудой полезного сигнала.

В средней части (АВ) амплитудная характеристика близка к линейной. Это рабочий участок, в его пределах искажения формы сигнала будет минимальным.
В верхней части графика амплитудная характеристика также имеет изгиб, который обусловлен ограничением по выходной мощности усилителя.
Если амплитуда входного сигнала такова, что работа усилителя идет на изогнутых участках, то в выходном сигнале появляются нелинейные искажения. Чем больше нелинейность, тем сильнее искажается синусоидальное напряжение сигнала, т.е. на выходе усилителя появляются новые колебания (высшие гармоники).

Шумы в усилителях бывают разных видов и вызываются разными причинами.

Белый шум.

Белый шум - это сигнал с равномерной спектральной плотностью на всех частотах. В пределах рабочего диапазона частот усилителей низкой частоты примером такого шума можно считать тепловой, вызванный хаотичным движением электронов. Спектр этого шума равномерен в очень широком диапазоне частот.

Розовый шум.

Розовый шум известен также как мерцательный (фликкер-шум). Спектральная плотность мощности розового шума пропорциональна отношению 1/f (плотность обратно пропорциональна частоте), то есть он является равномерно убывающим в логарифмической шкале частот. Розовый шум генерируется как пассивными так и активными электронными компонентами, о природе его происхождения до сих пор спорят учёные.

Фон от внешних источников.

Одна из основных причин шума - фон наводимый от посторонних источников, например от сети переменного тока 50 Гц. Он имеет основную гармонику в 50 Гц и кратные ей.

Самовозбуждение.

Самовозбуждение отдельных каскадов усилителя способно генерировать шумы, как правило определённой частоты.

Стандарты выходной мощности УНЧ и акустики

Номинальная мощность

Западный аналог RMS (Root Mean Squared – среднеквадратичное значение) В СССР определялась ГОСТом 23262-88 как усредненное значение подводимой электрической мощности синусоидального сигнала с частотой 1000 Гц, которое вызывает нелинейные искажения сигнала, не превышающие заданное значение КНИ (THD). Указывается как у АС, так и у усилителей. Обычно указанная мощность подгонялась под требования ГОСТ к классу сложности исполнения, при наилучшем сочетании измеряемых характеристик. Для разных классов устройств КНИ может варьироваться очень существенно, от 1 до 10 процентов. Может оказаться так, что система заявлена в 20 Ватт на канал, но измерения проведены при 10% КНИ. В итоге слушать акустику на данной мощности невозможно. Акустические системы способны воспроизводить сигнал на RMS-мощности длительное время.

Паспортная шумовая мощность

Иногда ещё называют синусоидальной. Ближайший западный аналог DIN - электрическая мощность, ограниченная исключительно тепловыми и механическими повреждениями (например: сползание витков звуковой катушки от перегрева, выгорание проводников в местах перегиба или спайки, обрыв гибких проводов и т.п.) при подведении розового шума через корректирующую цепь в течение 100 часов. Обычно DIN в 2-3 раза выше RMS.

Максимальная кратковременная мощность

Западный аналог PMPO (Peak Music Power Output – пиковая выходная музыкальная мощность). - электрическая мощность, которую громкоговорители АС выдерживают без повреждений (проверяется по отсутствию дребезжания) в течение короткого промежутка времени. В качестве испытательного сигнала используется розовый шум. Сигнал подается на АС в течение 2 сек. Испытания проводятся 60 раз с интервалом в 1 минуту. Данный вид мощности дает возможность судить о кратковременных перегрузках, которые может выдержать громкоговоритель АС в ситуациях, возникающих в процессе эксплуатации. Обычно в 10-20 раз выше DIN. Какая польза от того, узнает ли человек о том, что его система возможно перенесет коротенький, меньше секунды, синус низкой частоты с большой мощностью? Тем не менее, производители очень любят приводить именно этот параметр на упаковках и наклейках своей продукции… Огромные цифры данного параметра зачастую основаны исключительно на бурной фантазии маркетингового отдела производителей, и тут китайцы несомненно впереди планеты всей.

Максимальная долговременная мощность

Это электрическая мощность, которую выдерживают громкоговорители АС без повреждений в течение 1 мин. Испытания повторяют 10 раз с интервалом 2 минуты. Испытательный сигнал тот же.
Максимальная долговременная мощность определяется нарушением тепловой прочности громкоговорителей АС (сползанием витков звуковой катушки и др.).

Практика - лучший критерий истины. Разборки с аудиоцентром

Попробуем применить наши знания на практике. Заглянем в один очень известный интернет магазин и поищем там изделие ещё более известной фирмы из Страны Восходящего Солнца.
Ага - вот музыкальный центр футуристического дизайна продаётся всего за 10 000 руб. по очередной акции.:
Из описания узнаём, что аппарат оснащён не только мощными колонками, но и сабвуфером.

“Он обеспечивает превосходную чистоту звучания при выборе любого уровня громкости. Кроме того, такая конфигурация помогает сделать звук насыщенным и объёмным.”

Захватывающе, пожалуй стоит посмотреть на параметры. “ Центр содержит две фронтальные колонки, каждая мощностью по 235 Ватт, и активный сабвуфер с мощностью 230 Ватт.” При этом размеры первых всего 31*23*21 см
Да это же Соловей разбойник какой то, причём и по силе голоса и по размерам. В далёком 96 году на этом я бы свои исследования и остановил, а в дальнейшем, глядя на свои S90 и слушая самодельный Агеевский усилитель, бурно бы обсуждал с друзьями, насколько отстала от японской наша советская промышленность - лет на 50 или всё таки навсегда. Но сегодня с доступностью японской техники дело обстоит гораздо лучше и рухнули многие мифы с ней связанные, поэтому перед покупкой постараемся найти более объективные данные о качестве звука. На сайте про это ни слова. Кто бы сомневался! Зато есть инструкция по эксплуатации в формате pdf. Cкачиваем и продолжаем поиски. Среди чрезвычайно ценной информации о том, что “лицензия на технологию звуковой кодировки была получена от Thompson” и каким концом вставлять батарейки с трудом, но удаётся таки найти нечто напоминающее технические параметры. Весьма скудная информация запрятана в недрах документа, ближе к концу.
Привожу её дословно, в виде скриншота, поскольку, начиная с этого момента, у меня стали возникать серьёзные вопросы, как к приведённым цифрам не смотря на то, что они подтверждены сертификатом соответствия, так и к их интерпретации.
Дело в том, что чуть ниже было написано, что потребляемая от сети переменного тока мощность первой системы составляет 90 ватт, а второй вообще 75. Хм.


Изобретён вечный двигатель третьего рода? А может в корпусе музыкального центра прячутся аккумуляторы? Да не похоже - заявленный вес аппарата без акустики всего три кило. Тогда, как же потребляя 90 ватт от сети, можно получить на выходе 700 загадочных ватт (для справок) или хотя бы жалких, но вполне осязаемых 120 номинальных. Ведь при этом усилитель должен обладать КПД порядка 150 процентов, даже с отключенным сабвуфером! Но на практике этот параметр редко превышает планку в 75.

Попробуем применить полученную из статьи информацию на практике

Заявленная мощность для справки 235+235+230=700 - это явно PMPO. С номинальной ясности много меньше. Судя по определению это номинальная мощность , но не может она быть 60+60 только для двух основных каналов, без учёта сабвуфера, при номинальной мощности потребления в 90 ватт. Это всё больше напоминает уже не маркетинговую уловку, а откровенную ложь. Судя по габаритам и негласному правилу, соотношения RMS и PMPO, реальная номинальная мощность этого центра должна составлять 12-15 ватт на канал, а общая не превышать 45. Возникает закономерный вопрос - как можно доверять паспортным данным тайваньских и китайских производителей, когда даже известная японская фирма такое себе позволяет?
Покупать такой аппарат или нет - решение зависит от вас. Если для того, чтобы ставить по утрам на уши соседей по даче - да. В противном случае, без предварительного прослушивания нескольких музыкальных композиций в разных жанрах, я бы не рекомендовал.

Чайник дёгтя в банке мёда.


Казалось бы, мы имеем почти исчерпывающий список параметров, необходимых для оценки мощности и качества звука. Но, при более пристальном внимании, это оказывается далеко не так, по целому ряду причин:

  • Многие параметры больше подходят не столько для объективного отражения качества сигнала, сколько для удобства измерения. Большинство проводятся на частоте 1000 Гц, которая очень удобна для получения наилучших численных результатов. Она располагается далеко от частоты фона электрической сети в 50 Гц и в самом линейном участке частотного диапазона усилителя.
  • Производители зачастую грешат откровенной подгонкой характеристик усилителя под тесты. Например, даже во времена Советского Союза, УНЧ часто разрабатывались таким образом, чтобы обеспечить наилучший показатель КГИ, при максимальной выходной паспортной мощности. В то же время, на половинном уровне мощности в двухтактных усилителях часто проявлялось искажение типа ступенька, из-за чего коэффициент гармонических искажений при среднем положении ручки громкости мог зашкаливать за 10%!
  • В паспортах и инструкциях по эксплуатации часто приводятся нестандартные фейковые, абсолютно бесполезные характеристики типа PMPO. В то же время, не всегда можно найти даже такие базовые параметры как частотный диапазон или номинальную мощность. Про АЧХ и ФЧХ и говорить нечего!
  • Измерение параметров нередко производится по, сознательно искажённым, методикам.

Не удивительно, что многие покупатели впадают в таких условиях в субъективизм и ориентируются при покупке, в лучшем случае, исключительно на результаты короткого прослушивания, в худшем на цену.

Пора закругляться, статья и так получилась чрезмерно длинной!

Разговор об оценке качества и причинах искажений усилителей низкой частоты мы продолжим в следующей статье. Вооружившись минимальным багажом знаний можно переходить к таким интересным темам как интермодуляционные искажения и их связь с глубиной обратной связи!

В заключение хочется выразить искреннюю благодарность Роману Парпалак parpalak за его проект онлайн-редактора с поддержкой латеха и маркдауна. Без этого инструмента и так непростой труд по внедрению математических формул в текст стал бы во истину адским.

При усилении электрических сигналов могут возникнуть нелинейные, частотные и фазовые искажения.

Нелинейные искажения представляют собой изменение формы кривой усиливаемых колебаний, вызванное нелинейными свойствами цепи, через которую эти колебания проходят.

Основной причиной появления нелинейных искажений в усилителе является нелинейность характеристик усилительных элементов, а также характеристик намагничивания трансформаторов или дросселей с сердечниками.

Появление искажений формы сигнала, вызванных нелинейностью входных характеристик транзистора, иллюстрируется на графике рис.1. Предположим, что на вход усилителя подан испытательный сигнал синусоидальной формы. Попадая на нелинейный участок входной характеристики транзистора, этот сигнал вызывает изменения входного тока, форма которого отличается от синусоидальной. В связи с этим и выходной ток, а значит, и выходное напряжение изменят свою форму по сравнению с входным сигналом.

Чем больше нелинейность усилителя, тем сильнее искажается им синусоидальное напряжение, подаваемое на вход. Известно (теорема Фурье), что всякая несинусоидальная периодическая кривая может быть представлена суммой гармонических колебаний и высших гармоник. Таким образом, в результате нелинейных искажений на выходе усилителя появляются высшие гармоники, т.е. совершенно новые колебания, которых не было на входе.

Степень нелинейных искажений усилителя обычно оценивают величиной коэффициента нелинейных искажений (коэффициента гармоник )

где
- сумма электрических мощностей, выделяемых на нагрузке гармониками, появившимися в результате нелинейного усиления;- электрическая мощность первой гармоники.

В тех случаях, когда сопротивление нагрузки имеет одну и ту же величину для всех гармонических составляющих усиленного сигнала, коэффициент гармоник определяется по формуле

,

где -
и т.д. – действующие или амплитудные значения первой, второй, третьей и т.д. гармоник тока на выходе;
и т.д. действующие или амплитудные значения гармоник выходного напряжения.

Коэффициент гармоник обычно выражают в процентах, поэтому найденное по формулам значение
следует умножить на 100. Общая величина нелинейных искажений, возникающих на выходе усилителя и созданных отдельными каскадами этого усилителя, определяется по приближенной формуле:

где -
нелинейные искажения вносимые каждым каскадом усилителя.

Допустимая величина коэффициента гармоник всецело зависит от назначения усилителя. В усилителях контрольно-измерительной аппаратуры допустимое значение коэффициента гармоник
составляет десятые доли процента.

Частотные называются искажения , обусловленные изменением величины коэффициента усиления на различных частотах. Причиной частотных искажений является присутствие в схеме реактивных элементов – конденсаторов, катушек индуктивности, междуэлектродных емкостей усилительных элементов, емкости монтажа и т.д.

Для примера на рис. 2 показана амплитудно-частотная характеристика УНЧ.

Рис. 2. Амплитудно-частотная Рис. 3. Фазочастотная характеристика

характеристика УНЧ. усилителя.

При построении амплитудно-частотных характеристик частоту по оси абсцисс удобнее откладывать не в линейном, а в логарифмическом масштабе. Для каждой частоты фактически по оси откладывается величина lg f , а подписывается значение частоты.

Степень искажений на отдельных частотах выражается коэффициентом частотных искажений М, равным отношению коэффициента усиления на данной частоте

Обычно наибольшие частотные искажения возникают на границах диапазона частот f н и f в. Коэффициенты частотных искажений в этом случае равны


,

где К н и К в – соответственно коэффициенты усиления на нижних и верхних частотах диапазона.

Для усилителей низкой частоты идеальной частотной характеристикой является горизонтальная прямая линия (линия АВ на рис. 2).

где К н и К в - соответственно коэффициенты усиления на нижних и верхних частотах диапазона. Из определения коэффициента ча­стотных искажений следует, что если М > 1, то частотная характе­ристика в области данной частоты имеет завал, а если М < 1, - то подъем. Для усилителя низкой частоты идеальной частотной характеристикой является горизонтальная прямая (линия АВ на рис. 12.5).

Коэффициент частотных искажений многокаскадного усилителя равен произведению коэффициентов частотных искажений отдель­ных каскадов

М = М 1 М 2 М 3 . ..М n .

Следовательно, частотные искажения, возникающие в одном каскаде усилителя, могут быть скомпенсированы в другом, чтобы общий коэффициент частотных искажений не выходил за пределы заданного. Коэффициент частотных искажений, так же как и коэф­фициент усиления, удобно выражать в децибелах:

М ДБ = 20lgМ .

В случае многокаскадного усилителя

М ДБ = М 1 ДБ + М 2 ДБ + М 3 ДБ +…+ М n ДБ

Допустимая величина частотных искажений зависит от назна­чения усилителя. Для усилителей контрольно-измерительной ап­паратуры, например, допустимые искажения определяются тре­буемой точностью измерения и могут составлять десятые и даже сотые доли децибела.

Следует иметь в виду, что частотные искажения в усилителе всегда сопровождаются появлением сдвига фаз между входным и выходным сигналами, т. е. фазовыми искажениями. При этом под фазовыми искажениями обычно подразумевают лишь сдвиги, со­здаваемые реактивными элементами усилителя, а поворот фазы самим усилительным элементом во внимание не принимается.

Фазовые искажения, вносимые усилителем, оцениваются по его фазочастотной характеристике, представляющей собой график за­висимости угла сдвига фазы φ между входным и выходным напря­жениями усилителя от частоты рис. 3. Фазовые искажения в усилителе отсутствуют, когда фазовый сдвиг линейно зависит от частоты. Идеальной фазочастотной характеристикой является прямая, начинающаяся в начале координат – пунктирная линия на рис. 3. Фазочастотная характеристика реального усилителя имеет вид, показанный на рис. 3. сплошной линией.

Входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала

texvc не найден; См. math/README - справку по настройке.): K_\mathrm{H} = \frac{ \sqrt{U_2^2 + U_3^2 + U_4^2 + \ldots + U_n^2+ \ldots } }{ \sqrt{U_1^2+U_2^2 + U_3^2 + \ldots + U_n^2+ \ldots }}

КНИ - безразмерная величина и выражается обычно в процентах. Кроме КНИ, уровень нелинейных искажений часто выражают и через коэффициент гармонических искажений (КГИ или K Г ) - величину, выражающую степень нелинейных искажений устройства (усилителя и др.) и равную отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} = \frac{ \sqrt{U_2^2 + U_3^2 + U_4^2 + \ldots + U_n^2+ \ldots } }{U_1}

КГИ, так же, как и КНИ, выражается в процентах и связан с ним соотношением

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} = \frac{K_\mathrm{H}}{\sqrt{1 - K^2_\mathrm{H}}}

Очевидно, что для малых значений КГИ и КНИ совпадают в первом приближении. Интересно, что в западной литературе обычно пользуются КГИ, тогда как в отечественной литературе традиционно предпочитают КНИ.

Важно также отметить, что КНИ и КГИ - это лишь количественные меры искажений , но не качественные. Например, значение КНИ (КГИ), равное 3% ничего не говорит о характере искажений, т.е. о том, как в спектре сигнала распределены гармоники, и каков, например, вклад НЧ или ВЧ составляющих. Так, в спектрах ламповых УМЗЧ обычно преобладают низшие гармоники, что часто воспринимается на слух как «тёплый ламповый звук», а в транзисторных УМЗЧ искажения более равномерно распределены по спектру, и он более плоский, что часто воспринимается как «типичный транзисторный звук» (хотя спор этот во многом зависит от личных ощущений и привычек человека).

Примеры расчёта КГИ

Для многих стандартных сигналов КГИ может быть подсчитан аналитически. Так, для симметричного прямоугольного сигнала (меандра)

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^2}{8}-1\,}\approx \, 0.483\,=\,48.3\%

Идеальный пилообразный сигнал имеет КГИ

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^2}{6}-1\,}\approx \, 0.803\,=\,80.3\%

а симметричный треугольный

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^4}{96}-1\,}\approx\,0.121\,= \, 12.1\%

Несимметричный прямоугольный импульсный сигнал с соотношением длительности импульса к периоду, равному μ обладает КГИ

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,(\mu)=\sqrt{\frac{\mu(1-\mu)\pi^2\,}{2\sin^2\pi\mu}-1\;}\,\qquad 0<\mu<1 ,

который достигает минимума (≈0.483) при μ =0.5, т.е. тогда, когда сигнал становится симметричным меандром. Кстати, фильтрованием можно добиться значительного снижения КГИ этих сигналов, и таким образом получать сигналы, близкие по форме к синусоидальным. Например, симметричный прямоугольный сигнал (меандр) с изначальным КГИ в 48.3%, после прохождения через фильтр Баттерворта второго порядка (с частотой среза, равной частоте основной гармоники) имеет КГИ уже в 5.3%, а если фильтр четвёртого порядка - то КГИ=0.6%. Следует отметить, что чем более сложный сигнал на входе фильтра и чем более сложный сам фильтр (а точнее, его передаточная функция), тем более громоздкими и трудоёмкими будут вычисления КГИ. Так, стандартный пилообразный сигнал, прошедший через фильтр Баттерворта первого порядка, имеет КГИ уже не 80.3% а 37.0%, который в точности даётся следующим выражением

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \, \sqrt{\frac{\,\pi^2}{3} - \pi\,\mathrm{cth}\,\pi\,}\,\approx\,0.370\,= \, 37.0\%

А КГИ того же сигнала, прошедшего через такой же фильтр, но второго порядка, уже будет даваться достаточно громоздкой формулой

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,= \sqrt{\pi\,\frac{\,\mathrm{ctg}\,\dfrac{\pi}{\sqrt{2\,}}\cdot\,\mathrm{cth}^{2\!}\dfrac{\pi}{\sqrt{2\,}} -\,\mathrm{ctg}^{2\!}\dfrac{\pi}{\sqrt{2\,}}\cdot\,\mathrm{cth}\,\dfrac{\pi}{\sqrt{2\,}} -\,\mathrm{ctg}\,\dfrac{\pi}{\sqrt{2\,}} - \,\mathrm{cth}\,\dfrac{\pi}{\sqrt{2\,}}\;} {\sqrt{2\,}\left(\mathrm{ctg}^{2\!}\dfrac{\pi}{\sqrt{2\,}} +\,\mathrm{cth}^{2\!}\dfrac{\pi}{\sqrt{2\,}}\!\right)} \,+\,\frac{\,\pi^2}{3} \,-\, 1\;} \;\approx\;0.181\,= \, 18.1\%

Если же рассматривать вышеупомянутый несимметричный прямоугольный импульсный сигнал, прошедший через фильтр Баттерворта p -ого порядка, то тогда

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,(\mu, p)= \csc\pi\mu\,\cdot \!\sqrt{\mu(1-\mu)\pi^2-\,\sin^2\!\pi\mu\, -\,\frac{\,\pi}{2}\sum_{s=1}^{2p} \frac{\,\mathrm{ctg}\,\pi z_s}{z_s^2} \prod\limits_{\scriptstyle l=1\atop\scriptstyle l\neq s}^{2p}\!\frac{1}{\,z_s-z_l\,}\, +\,\frac{\,\pi}{2}\,\mathrm{Re}\sum_{s=1}^{2p} \frac{e^{i\pi z_s(2\mu-1)}}{z_s^2\sin \pi z_s} \prod\limits_{\scriptstyle l=1\atop\scriptstyle l\neq s}^{2p}\!\frac{1}{\,z_s-z_l\,}\,}

где 0<μ <1 и

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): z_l\equiv \exp{\frac{i\pi(2l-1)}{2p}}\, \qquad l=1, 2,\ldots, 2p

подробности вычислений - см. Ярослав Благушин и Эрик Моро .

Измерения

  • В низкочастотном (НЧ) диапазоне для измерения КНИ применяются измерители нелинейных искажений (измерители коэффициента гармоник).
  • На более высоких частотах (СЧ, ВЧ) используют косвенные измерения с помощью анализаторов спектра или селективных вольтметров .

Типовые значения КНИ и КГИ

Ниже приведены некоторые типовые значения для КНИ, и в скобках, для КГИ.

См. также

Напишите отзыв о статье "Коэффициент нелинейных искажений"

Литература, ссылки, примечания

  • Справочник по радиоэлектронным устройствам : В 2-ух томах; Под ред. Д. П. Линде - М.: Энергия,
  • Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины - М: Рус. яз.,

Дополнительные ссылки

Отрывок, характеризующий Коэффициент нелинейных искажений

Я застыла в настоящем шоке. Почему-то такой невероятный факт никак не хотел укладываться в моей ошарашенной голове...
– Бабушка?.. – только и смогла произнести я.
Стелла кивнула, очень довольная произведённым эффектом.
– Как же так? Поэтому она и помогла тебе их найти? Она знала?!.. – тысячи вопросов одновременно бешено крутились в моём взбудораженном мозгу, и мне казалось, что я никак не успею всего меня интересующего спросить. Я хотела знать ВСЁ! И в то же время прекрасно понимала, что «всего» мне никто не собирается говорить...
– Я наверное потому его и выбрала, что чувствовала что-то. – Задумчиво сказала Стелла. – А может это бабушка навела? Но она никогда не признается, – махнула рукой девчушка.
– А ОН?.. Он тоже знает? – только и смогла спросить я.
– Ну, конечно же! – рассмеялась Стелла. – А почему тебя это так удивляет?
– Просто она уже старенькая... Ему это должно быть тяжело, – не зная, как бы поточнее объяснить свои чувства и мысли, сказала я.
– О, нет! – опять засмеялась Стелла. – Он был рад! Очень-очень рад. Бабушка дала ему шанс! Никто бы не смог ему в этом помочь – а она смогла! И он увидел её опять... Ой, это было так здорово!
И тут только наконец-то я поняла, о чём она говорит... Видимо, бабушка Стеллы дала своему бывшему «рыцарю» тот шанс, о котором он так безнадёжно мечтал всю свою длинную, оставшуюся после физической смерти, жизнь. Ведь он так долго и упорно их искал, так безумно хотел найти, чтобы всего лишь один только раз мог сказать: как ужасно жалеет, что когда-то ушёл... что не смог защитить... что не смог показать, как сильно и беззаветно их любил... Ему было до смерти нужно, чтобы они постарались его понять и смогли бы как-то его простить, иначе ни в одном из миров ему незачем было жить...
И вот она, его милая и единственная жена, явилась ему такой, какой он помнил её всегда, и подарила ему чудесный шанс – подарила прощение, а тем же самым, подарила и жизнь...
Тут только я по-настоящему поняла, что имела в виду Стеллина бабушка, когда она говорила мне, как важен подаренный мною «ушедшим» такой шанс... Потому что, наверное, ничего страшнее на свете нет, чем остаться с не прощённой виной нанесённой обиды и боли тем, без кого не имела бы смысла вся наша прошедшая жизнь...
Я вдруг почувствовала себя очень усталой, как будто это интереснейшее, проведённое со Стеллой время отняло у меня последние капельки моих оставшихся сил... Я совершенно забыла, что это «интересное», как и всё интересное раньше, имело свою «цену», и поэтому, опять же, как и раньше, за сегодняшние «хождения», тоже приходилось платить... Просто все эти «просматривания» чужих жизней являлись огромной нагрузкой для моего бедного, ещё не привыкшего к этому, физического тела и, к моему великому сожалению, меня пока что хватало очень ненадолго...
– Ты не волнуйся, я тебя научу, как это делать! – как бы прочитав мои грустные мысли, весело сказала Стелла.
– Делать, что? – не поняла я.
– Ну, чтобы ты могла побыть со мной дольше. – Удивившись моему вопросу, ответила малышка. – Ты живая, поэтому тебе и сложно. А я тебя научу. Хочешь погулять, где живут «другие»? А Гарольд нас здесь подождёт. – Лукаво сморщив маленький носик, спросила девочка.
– Прямо сейчас? – очень неуверенно спросила я.
Она кивнула... и мы неожиданно куда-то «провалились», «просочившись» через мерцающую всеми цветами радуги «звёздную пыль», и оказались уже в другом, совершенно не похожем на предыдущий, «прозрачном» мире...
* * *

Ой, ангелы!!! Смотри, мамочка, Ангелы! – неожиданно пропищал рядом чей-то тоненький голосок.
Я ещё не могла очухаться от необычного «полёта», а Стелла уже мило щебетала что-то маленькой кругленькой девчушке.
– А если вы не ангелы, то почему вы так сверкаете?.. – искренне удивившись, спросила малышка, и тут же опять восторженно запищала: – Ой, ма-а-амочки! Какой же он красивый!..
Тут только мы заметили, что вместе с нами «провалилось» и последнее «произведение» Стеллы – её забавнейший красный «дракончик»...

Светлана в 10 лет

– Это... что-о это? – аж с придыхом спросила малышка. – А можно с ним поиграть?.. Он не обидится?
Мама видимо мысленно её строго одёрнула, потому что девочка вдруг очень расстроилась. На тёплые коричневые глазки навернулись слёзы и было видно, что ещё чуть-чуть – и они польются рекой.
– Только не надо плакать! – быстро попросила Стелла. – Хочешь, я тебе сделаю такого же?
У девочки мгновенно засветилась мордашка. Она схватила мать за руку и счастливо заверещала:
– Ты слышишь, мамочка, я ничего плохого не сделала и они на меня совсем не сердятся! А можно мне иметь такого тоже?.. Я, правда, буду очень хорошей! Я тебе очень-очень обещаю!
Мама смотрела на неё грустными глазами, стараясь решить, как бы правильнее ответить. А девочка неожиданно спросила:
– А вы не видели моего папу, добрые светящиеся девочки? Он с моим братиком куда-то исчез...
Стелла вопросительно на меня посмотрела. И я уже заранее знала, что она сейчас предложит...
– А хотите, мы их поищем? – как я и думала, спросила она.
– Мы уже искали, мы здесь давно. Но их нет. – Очень спокойно ответила женщина.
– А мы по-другому поищем, – улыбнулась Стелла. – Просто подумайте о них, чтобы мы смогли их увидеть, и мы их найдём.
Девочка смешно зажмурилась, видимо, очень стараясь мысленно создать картинку своего папы. Прошло несколько секунд...
– Мамочка, а как же так – я его не помню?.. – удивилась малышка.
Такое я слышала впервые и по удивлению в больших Стеллиных глазах поняла, что для неё это тоже что-то совершенно новенькое...
– Как так – не помнишь? – не поняла мать.
– Ну, вот смотрю, смотрю и не помню... Как же так, я же его очень люблю? Может, и правда его больше нет?..
– Простите, а вы можете его увидеть? – осторожно спросила у матери я.
Женщина уверенно кивнула, но вдруг что-то в её лице изменилось и было видно, что она очень растерялась.
– Нет... Я не могу его вспомнить... Неужели такое возможно? – уже почти испуганно сказала она.
– А вашего сына? Вы можете вспомнить? Или братика? Ты можешь вспомнить своего братика? – обращаясь сразу к обеим, спросила Стелла.
Мама и дочь отрицательно покачали головами.
Обычно такое жизнерадостное, личико Стеллы выглядело очень озабоченным, наверное, никак не могла понять, что же такое здесь происходит. Я буквально чувствовала напряжённую работу её живого и такого необычного мозга.

Из курсов ТЭЦ и ТЭС мы знаем, что электрические цепи делятся на линейные, нелинейные и параметрические. Последние два типа цепей отличаются от линейных тем свойством, что могут создавать новые гармонические составляющие в спектре отклика по сравнению со спектром входного сигнала.

Нелинейное преобразование сигнала может быть желательным и полезным (например, при детектировании), а может быть вредным, сопутствующим (например, в усилителях). В этом случае, когда это явление не используется в устройстве, содержащем данную цепь, оно весьма нежелательно, так как часто создает вредные побочные эффекты. Поэтому форма сигнала на выходе этих устройств будет отличаться от формы сигнала на их входе. Изменение формы сигнала называется нелинейным искажением.

Причина нелинейных искажений заключается в том, что при подаче на вход гармонического сигнала частотой f на выходе появляется сигнал, содержащий постоянную составляющую, основную частоту и высшие гармоники с частотами 2f, 3f, 4f и т.д. Амплитуды высших гармоник с увеличением их номеров быстро убывают. Определяющими обычно бывают вторая и третья гармоники.

Источником нелинейных искажений являются элементы цепей, у которых ток не пропорционален приложенному напряжению, т.е. имеющие нелинейную вольтамперную характеристику. Это, как правило, электронные лампы, транзисторы, диоды, катушки c ферромагнитными сердечниками.

Необходимость измерения нелинейных искажений связана с исследованием параметров усилителей и генераторов синусоидальных колебаний.

Нелинейные искажения представляют собой сложной явление, зависящее от многих параметров: состава электрической цепи, ее амплитудно-частотной характеристики, формы сигнала, его амплитуды и т. п. С увеличением амплитуды нелинейные искажения увеличиваются. Обычно при увеличении частоты нелинейные искажения в усилителе также увеличиваются.

Нелинейные искажения оцениваются коэффициентом гармоник К Г , а также коэффициентом нелинейных искажений К Н .

Коэффициент гармоник К Г определяется как отношение среднеквадратического (действующего) значения напряжения суммы всех гармоник сигнала, кроме первой, к среднеквадратическому (действующему) значению напряжения первой гармоники по формуле (34):

где U 1 , U 2 , U 3 , … Un – среднеквадратические значения напряжения отдельных гармоник выходного сигнала.

Коэффициент К Г характеризует отличие формы данного периоди­ческого сигнала от гармонической.

Нетрудно увидеть, что при отсутствии в выходном сигнале высших гармоник, К Г = 0, т.е. синусоидальный сигнал со входа на выход передается без искажений.

Коэффициент нелинейных искажений Кн определяется, как отношение среднеквадратического (действующего) значения напряжения высших гармоник к среднеквадратическому (действующему) значению всего сигнала по формуле (35):

Самыми распространенными одночастотными методами измерения являются:

1. Метод подавления основной гармоники.

2. Метод анализа напряжений.

Измерение нелинейных искажений методом подавления основной гармоники

В соответствии с формулой для определения коэффициента нелинейных иска­жений необходимо измерить действующее значение исследуемого сигнала и дейст­вующее значение высших гармонических составляющих.

Существуют специальные приборы, измеряющие коэффициент нелинейных искажений, называемые измерителями нелинейных искажений.

Упрощенная структурная схема аналогового измерителя нелинейных искажений приведена на рисунке 1.

Рисунок 1 – Упрощенная структурная схема аналогового измерителя нелинейных искажений

Схема прибора сод ержит входное устройство, перестраиваемый режекторный фильтр и квадратичный вольтметр с аттенюатором.

Принцип действия прибора основан на раздельном измерении среднеквадратического значения напряжения исследуемого сигнала и среднеквадратического значения напряжения высших гармоник этого же сигнала.

Входное устройство обеспечивает необходимую величину входного сопротивления и служит для согласования измерительного прибора с источником исследуемого сигнала.

Режекторный фильтр в идеальном случае должен иметь бесконечно большое затухание на частоте первой (основной) гармоники и нулевое затухание на частотах высших гармоник. Обычно режекторный фильтр реализуется с помощью мостовой схемы Вина, состоящей из резисторов и конденсаторов (см. рисунок 2).

Измерение нелинейных искажений методом анализа напряжений

Измерение нелинейных искажений методом анализа напряжений (по отдельным гармоникам) осуществляется с помощью избирательного измерителя уровней (ИИУ).

Схема измерения коэффициента гармоник с помощью ИИУ приведена на рисунке 3, и состоит из генератора, ФНЧ, исследуемого четырехполюсника, ИИУ.


Рисунок 3 – Измерение коэффициента гармоник методом анализа напряжения

ИИУ подключается к выходу исследуемого объекта. При одночастотном синусоидальном сигнале для контроля напряжения любой частоты, оказавшейся в нем в результате нелинейных искажений. При этом ИИУ последовательно настраивается на первую, вторую, третью гармоники (а при необходимости и на более высокие), напряжение (уровень) которых нужно проконтролировать. Таким образом, отдельно измеряются уровни всех интересующих гармоник исследуемого сигнала, и находится затухание нелинейности для каждой из них, при этом берется разность уровня первой гармоники и каждой из контролировавшихся частот:

А Кn = L 1 – L n

 

 

Это интересно: