→ Спектральная мощность. Спектральная плотность. Скалярное произведение сигналов. Обобщенная формула Рэлея

Спектральная мощность. Спектральная плотность. Скалярное произведение сигналов. Обобщенная формула Рэлея

1) По своему физическому смыслу спектр мощности вещественен и неотрицателен:

Поэтому по спектру мощности принципиально невозможно восстановить какую - либо отдельно взятую реализацию случайного процесса.

2) Поскольку чётная функция аргумента , то соответствующий спектр мощности представляет собой чётную функцию частоты . Отсюда следует, что пару преобразований Фурье (6.14), (6.15) можно записать, используя интегралы в полубесконечных пределах:

(6.17)

(6.18)

3. Целесообразно ввести так называемый односторонний спектр мощности случайного процесса, определив его следующим образом:

(6.19)

Функция позволяет вычислить дисперсию стационарного случайного процесса путём интегрирования по положительным (физическим частотам):

(6.20)

4. В технических расчётах часто вводят односторонний спектр мощности N(f), представляющий собой среднюю мощность случайного процесса, приходящуюся на интервал частот шириной в 1 Гц:

(6.21)

При этом, как легко видеть

Весьма важным параметром случайных процессов является интервал корреляции. Случайные процессы, как правило, обладают следующими свойствами: их функция корреляции стремится к нулю с увеличением временного сдвига . Чем быстрее убывает функция , тем меньше оказывается статистическая связь между мгновенными значениями случайного сигнала в два несовпадающих момента времени.

Числовой характеристикой, служащей для оценки «скорости изменения» реализации случайного процесса, является интервал корреляции определяемый выражением:

(6.22)

Если известна информация о поведении какой-либо реализации «в прошлом», то возможен вероятностный прогноз случайного процесса на время порядка .

Ещё одним существенным параметром для случайного процесса является эффективная ширина спектра. Пусть исследуемый случайный процесс характеризуется функцией - односторонним спектром мощности, причём - экстремальное значение этой функции. Заменим мысленно данный случайный процесс другим процессом, у которого спектральная плотность мощности постоянна и равна в пределах эффективной полосы частот , выбираемой из условия равенства средних мощностей обоих процессов:

Отсюда получается формула для эффективной ширины спектра:

(6.23)

Вне пределов указанной полосы спектральная плотность случайного процесса считается равной 0.

Этой числовой характеристикой часто пользуются для инженерного расчёта дисперсии шумового сигнала: .



Если реализации случайного процесса имеют размерность напряжения (В), то относительный спектр мощности N имеет размерность .

Белый шум и его свойства. Гауссовский случайный процесс.

А) Белый шум.

стационарный случайный процесс с постоянной на всех частотах спектральной плотностью мощности называется белым шумом.

(7.1)

По теореме Винера-Хинчина функция корреляции белого шума:

равна нулю всюду кроме точки . Средняя мощность (дисперсия) белого шума неограниченно велика.

Белый шум является дельта-коррелированным процессом. Некоррелированность мгновенных значений такого случайного сигнала означает бесконечно большую скорость изменения их во времени – как бы мал ни был интервал , сигнал за это время может измениться на любую наперёд заданную величину.

Белый шум является абстрактной математической моделью и отвечающий ему физический процесс, безусловно, не существует в природе. Однако это не мешает приближённо заменять реальные достаточно широкополосные случайные процессы белым шумом в тех случаях, когда полоса пропускания цепи, на которую воздействует случайный сигнал, оказывается существенно уже эффективной ширины спектра шума.

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде (t ). Тогда для него можно записать ряд Фурье

Для того, чтобы перейти к функции s (t ) следует в выражении (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине:

амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя,т.к.спектр становится сплошным.

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают т.е.

Пределы интегрирования можно для общности поставить бесконечными, так как все равно там, где s(t) равна нулю, и интеграл равен нулю.

Выражение для спектральной плотности называют прямым преобразованием Фурье. Обратное преобразование Фурье определяет временную функцию сигнала по его спектральной плотности

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности

определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

Энергетический спектр сигнала. Если функция s(t) имеет фурье-плотность мощности сигнала (спектральная плотность энергии сигнала ) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2  |S()|2 = S()S*() = W(). (5.2.9)

Спектр мощности W()-вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге t 0, мнимая часть спектра Wuv () стремится к нулевым значениям, а реальная часть - к значениям модуля спектра. При полном временном совмещении сигналов имеем:

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение. Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

Энергетический спектр сигнала – это распределение энергии базисных сигналов, которые составляют негармонический сигнал, на оси частот. Математически энергетический спектр сигнала равен квадрату модуля спектральной функции:

Соответственно амплитудно-частотный спектр показывает множество амплитуд составляющих базисных сигналов на частотной оси, а фазо-частотный – множество фаз

Модуль спектральной функции часто называют амплитудным спектром , а ее аргумент – фазовым спектром .

Кроме того, существует и обратное преобразование Фурье, позволяющее восстановить исходный сигнал, зная его спектральную функцию:

Например, возьмем прямогульный импульс:

Еще один пример спектров:

Частота Найквиста, теорема Котельникова .

Частота Найквиста - в цифровой обработке сигналов частота, равная половине частоты дискретизации. Названа в честь Гарри Найквиста. Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если спектр (спектральная плотность)(наивысшая частота полезного сигнала) сигнала равен или ниже частоты Найквиста. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот), и форма восстановленного сигнала будет искажена. Если спектр сигнала не имеет составляющих выше частоты Найквиста, то он может быть (теоретически) продискретизирован и затем восстановлен без искажений. Фактически «оцифровка» сигнала (превращение аналогового сигнала в цифровой) сопряжена с квантованием отсчѐтов - каждый отсчѐт записывается в виде цифрового кода конечной разрядности, в результате чего к отсчетам добавляются ошибки квантования (округления), при определенных условиях рассматриваемые как «шум квантования».

Реальные сигналы конечной длительности всегда имеют бесконечно широкий спектр, более или менее быстро убывающий с ростом частоты. Поэтому дискретизация сигналов всегда приводит к потерям информации (искажению формы сигнала при дискретизации-восстановлении), как бы ни была высока частота дискретизации. При выбранной частоте дискретизации искажение можно уменьшить, если обеспечить подавление спектральных составляющих аналогового сигнала (до дискретизации), лежащих выше частоты Найквиста, для чего требуется фильтр очень высокого порядка, чтобы избежать наложения «хвостов». Практическая реализация такого фильтра весьма сложна, так как амплитудно-частотные характеристики фильтров имеют не прямоугольную, а гладкую форму, и образуется некоторая переходная полоса частот между полосой пропускания и полосой подавления. Поэтому частоту дискретизации выбирают с запасом, к примеру, в аудио компакт-дисках используется частота дискретизации 44100 Герц, в то время как высшей частотой в спектре звуковых сигналов считается частота 20000 Гц. Запас по частоте Найквиста в 44100 / 2 - 20000 = 2050 Гц позволяет избежать подмены частот при использовании реализуемого фильтра невысокого порядка.

Теорема Котельникова

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании аналогового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации Интуитивно нетрудно понять следующую идею. Если аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe, (т.е. функция u(t) имеет вид плавно изменяющейся кривой, без резких изменений амплитуды), то вряд ли на некотором небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сигнала по последовательности его отсчетов зависит от величины интервала дискретизации Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшением интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискретизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала. Оптимальная величина интервала дискретизации устанавливается теоремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в математике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), доказанной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возможность правильно осуществить дискретизацию аналогового сигнала и определяет оптимальный способ его восстановления на приемном конце по отсчетным значениям.

Согласно одной из наиболее известных и простых интерпретаций теоремы Котельникова, произвольный сигнал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последовательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

где k - номер отсчета; - значение сигнала в точках отсчета - верхняя частота спектра сигнала.

Частотное представление дискретных сигналов .

Большинство сигналов можно представить в виде ряда Фурье:

Под энергией сигнала иЦ) понимают величину

Если сигнал имеет конечную длительность Т, т.е. не равен нулю на отрезке времени [-Т/ 2, Т/ 2], то его энергия

Запишем выражение для энергии сигнала, используя формулу (2.15):

где

Полученное равенство называется равенством Парсеваля. Оно определяет энергию сигнала через временную функцию или спектральную плотность энергии, которая равна |5(/0))| 2 . Спектральная плотность энергии называется также энергетическим спектром.

Рассмотрим сигнал, существующий на ограниченном интервале времени. К такому сигналу применимо равенство Парсеваля. Следовательно,

Разделим левую и правую части равенства на интервал времени, равный Г, и устремим этот интервал к бесконечности:

С увеличением Т энергия незатухающих сигналов возрастает,

однако отношение может стремиться к определенному пределу. Этот предел называется спектральной плотностью мощности С(со). Размерность спектральной плотности мощности: [В 2 Дц].

Автокорреляционная функция

Автокорреляционная функция сигнала и (?) определяется следующим интегральным выражением:

где т - аргумент, определяющий функцию Я(х) и имеющий размерность времени; и(? + т) - исходный сигнал, сдвинутый во времени на величину -т.

Автокорреляционная функция имеет следующие свойства.

1. Значение автокорреляционной функции при сдвиге т = О равно энергии сигнала Е:

2. Автокорреляционная функция при сдвигах т Ф 0 меньше энергии сигнала:

3. Автокорреляционная функция является четной функцией, т.е.

В справедливости свойств 2 и 3 убедимся на примере.

Пример 2.6. Вычислить автокорреляционные функции сигналов: видеосигнала, представленного на рис. 2.7, я, и радиосигнала с теми же амплитудой и длительностью. Несущая частота радиосигнала равна щ, а начальная фаза равна 0.

Решение. Первую задачу решим графическим способом. Автокорреляционная функция определяется интегралом от произведения функции и (?) и ее смещенной во времени копии. Смещение видеосигнала найдем из уравнения? + т = 0. График функции м(? + т) приведен на рис. 2.7, б. Площадь, определяемая графиком произведения м(?)м(? + т) (рис. 2.7, в), равна

Функция Д(т) определяется уравнением прямой (рис. 2.7, г). Функция имеет максимум, если значение аргумента т = 0, и равна 0, если т = т и. Для других значений аргумента /?(т)

Чтобы убедиться в справедливости свойства 3, аналогично вычислим функцию для отрицательных значений т:

Рис. 2.7.

видеоимпульса:

а - прямоугольный видеоимпульс; б - задержанный во времени прямоугольный импульс; в - произведение импульсов; г - автокорреляционная функция

Окончательное выражение для автокорреляционной функции

Функция приведена на рис. 2.7, г и имеет треугольный вид.

Вычислим автокорреляционную функцию радиосигнала, расположив его симметрично относительно вертикальной оси. Радиосигнал:

Подставляя значения сигнала и его сдвинутой копии в формулу для автокорреляционной функции /?(т), получим

Выражение для автокорреляционной функции радиоимпульса состоит из двух слагаемых. Первое из них определяется произведением треугольной функции и гармонического сигнала. На выходе согласованного фильтра это слагаемое реализуется в виде ромбовидного радиоимпульса. Второе слагаемое определяется произведением треугольной функции и функций (втд^/лг, расположенных в точках т = +т и. Значения функций (втх)/:*:, которые оказывают заметное влияние на второе слагаемое автокорреляционной функции, весьма быстро убывают при изменении аргумента т от -т и до оо и от т и до -°о. Решив уравнение

можно найти интервалы задержки, в пределах которых значения функций (втлс)/;*; еще влияют на поведение функции /?(т). Для положительных значений задержки

где 7о - период гармонического сигнала.

Аналогично находится интервал для отрицательных значений задержки.

Поскольку влияние второго слагаемого автокорреляционной функции ограничивается весьма малыми (по сравнению с длительностью радиоимпульсов т и) интервалами 7о/2, в пределах которых значения треугольной функции весьма малы, то вторым слагаемым автокорреляционной функции радиоимпульса можно пренебречь.

Выявим связь автокорреляционной функции #(т) со спектральной плотностью энергии сигнала |5(/со)| 2 . Для этого выразим сдвинутый во времени сигнал и(1ь + т) через его спектральную плотность 5(/со):

Подставим данное выражение в выражение (2.21). В результате получим

Нетрудно убедиться также в справедливости равенства

Разделим обе части равенства (2.23) на интервал времени Т и устремим величину Т к бесконечности:

С учетом формулы (2.20) перепишем полученное выражение:

где
- предел отношения автокорреляционной функции ограниченного во времени сигнала к значению этого времени и при стремлении его к бесконечности. Если этот предел существует, то он определяется обратным преобразованием Фурье от спектральной плотности мощности сигнала.

Обобщением понятия «автокорреляционная функция» является взаимно корреляционная функция, которая представляет собой скалярное произведение двух сигналов:

Рассмотрим основные свойства взаимно корреляционной функции.

1. Перестановка сомножителей под знаком интеграла изменяет знак аргумента взаимно корреляционной функции:

В приведенных преобразованиях использована замена t + т = х.

  • 2. Взаимно корреляционная функция, в отличие от автокорреляционной функции, не является четной относительно аргумента т.
  • 3. Взаимно корреляционная функция определяется обратным преобразованием Фурье от произведения спектральных плотностей сигналов u(t), v(t) :

Эта формула может быть выведена аналогично формуле (2.22).

Взаимно корреляционная функция между периодически повторяющимся сигналом и непериодическим

сигналом v(t ) = Uq(?)

где R(t) - автокорреляционная функция непериодического сигнала u 0 (t).

Полученное выражение равно сумме двух интегралов. При сдвиге, равном нулю, первый интеграл равен нулю, а второй равен энергии сигнала. При сдвиге, равном периоду сигнала, первый интеграл равен энергии сигнала, а второй равен нулю. Каждое значение функции при других сдвигах равно сумме значений автокорреляционных функций непериодического сигнала, смещенных относительно друг друга на один период. Кроме того, взаимно корреляционная функция является периодической функцией, удовлетворяющей уравнению

Взаимно корреляционная функция Я ил> (т) между сигналом u(t ) и сигналом

равна - длительность сигнала v(t).

Действительно, вследствие того что период сигнала u(t ) равен Т и

взаимно корреляционная функция где

Вычисляя предел функции (2п + 1)7? м Мо (т) при п -> определим выражение для автокорреляционной функции периодического сигнала:

Размерность функции: [В 2 /Гц].

Значения функции при нулевом сдвиге и других сдвигах, для которых Лц Мо (т) Ф 0, равны бесконечности. По этой причине использование последнего выражения в качестве характеристики периодического сигнала теряет смысл.

Разделим последнее выражение на интервал, равный (2п + 1 )Т. В результате получим функцию


так как вследствие периодичности функции - т + Т) = - т).

Полученная формула определяет функцию В(т) как предел отношения автокорреляционной функции сигнала, существующего в интервале времени (2п + 1 )Т, к этому интервалу и стремлении его к бесконечности. Этот предел для периодически повторяющегося сигнала называется автокорреляционной функцией периодического сигнала. Размерность этой функции: [В 2 ].

Прямое преобразование Фурье одного периода автокорреляционной функции периодического сигнала определяет спектральную плотность мощности, которая является непрерывной функцией частоты. По этой плотности, используя формулу (2.17), можно найти спектральную плотность мощности периодической автокорреляционной функции сигнала , которая определяется для дискретных значений частот:

где 0)1 = 2п/Т.

Если автокорреляционная функция записана в виде ряда Фурье в тригонометрической форме, то выражение для ее спектральной плотности

Пример 2.7. Вычислить периодическую автокорреляционную функцию сигнала и(ф) = А бш СИ. По найденной функции, ограниченной одним периодом, определить спектральную плотность мощности.

Решение. Подставляя в выражение (2.26) заданный сигнал, получим выражение для периодической автокорреляционной функции:

Полученное выражение подставим в формулу (2.24) и найдем спектральную плотность мощности:

Пример 2.8. Для периодической нормированной автокорреляционной функции шумоподобного сигнала (М-последовательности с периодом N = 1023) вычислить спектральную плотность мощности. (Периодическая функция для последовательности меньшей длины (IV= 15) приведена на рис. 3.39.)

Решение. Для сравнительно большого периода ЛГ = 1023 значения автокорреляционной функции в интервале Т - То > т > То, где То - длительность импульса шумоподобной последовательности, примем равными нулю. В этом случае автокорреляционная функция определяется периодически повторяющейся с периодом Т последовательностью треугольных импульсов. Основание каждого треугольника равно 2то, а его высота равна 1. Уравнение, определяющее автокорреляционную функцию в пределах одного периода, равно В(т) = 1 - |т|/хо- Учитывая четность этой функции, определим коэффициенты ряда Фурье:

При вычислении интеграла использована формула

Подставляя вычисленные коэффициенты в формулу (2.27), ползшим

Спектральная плотность мощности периодической автокорреляционной функции равна взвешенной сумме бесконечно большого числа дельтафункций. Весовые множители определяются квадратом функции (этх)/:»:, умноженной на постоянный коэффициент 2я(то/Т).

Корреляционные функции цифровых сигналов связаны с корреляционными функциями последовательностей символов. Для кодовой последовательности (см. § 1.3) конечного числа N

двоичных символов автокорреляционная функция записывается в виде

где - двоичные символы, равные 0 или 1, или символы, равные -1, 1; д = О, 1, 2, ..., N - .

Последовательности символов могут быть как детерминированными, так и случайными. При передаче информации характерным свойством последовательности символов является их случайность. Значения автокорреляционной функции (при сдвигах, нс равных нулю), вычисленные по заранее записанной случайной последовательности конечной длины, также являются случайными.

Автокорреляционные функции детерминированных последовательностей, которые используются для синхронизации, а также в качестве носителей дискретных сообщений, являются детерминированными функциями.

Сигналы, построенные с использованием кодов или их кодовых последовательностей, называются кодированными сигналами.

Большинство свойств автокорреляционной функции кодовой последовательности совпадает с рассмотренными выше свойствами автокорреляционной функции сигнала.

При пулевом сдвиге автокорреляционная функция кодовой последовательности достигает максимума, который равен

Если символы равны -1, 1, то г(0) = N.

Значения автокорреляционной функции при других сдвигах меньше г(0).

Автокорреляционная функция кодовой последовательности является четной функцией.

Обобщением автокорреляционной функции является взаимно корреляционная функция. Для кодовых последовательностей одинаковой длины эта функция

где 2 } 0 6/, - символы соответственно первой и второй последовательности.

Многие свойства функции г 12 (д) совпадают со свойствами взаимно корреляционной функции рассмотренных выше сигналов. Если функция г^(д), I Ф для любой пары кода при сдвиге д = О равна нулю, то такие коды называются ортогональными. Краткое описание некоторых используемых в системах связи кодов приведено в приложениях 2-4.

Взаимно корреляционная функция между кодовой последовательностью и периодически повторяющейся той же последовательностью называется периодической автокорреляционной функцией кодовой последовательности. Выражение для функции следует из выражений (2.25), (2.26):

где г(д) - непериодическая автокорреляционная функция кодовой последовательности; д - значение сдвига между последовательностями.

Подставим в полученную формулу выражения автокорреляционных функций:

где а/г, а^+ц - элементы кодовой последовательности.

Периодическая автокорреляционная функция кодовой последовательности равна взаимно корреляционной функции, вычисленной для кодовой последовательности и циклически сдвинутых символов этой последовательности. Циклически сдвинутые кодовые последовательности, полученные по исходной последовательности а 0 = а 0 ,а { ,а 2 , ..., а м _ ь приведены ниже. Кодовая последовательность а { получена в результате сдвига исходной последовательности а 0 па один символ вправо и переноса последнего символа а дм в начало сдвинутой последовательности. Остальные последовательности получены аналогично:

Пример 2.9. Вычислить автокорреляционную и периодическую автокорреляционную функцию кодированного сигнала (рис. 2.8, а)

где и 0 (О - прямоугольный импульс с амплитудой А и длительностью т и.

Этот сигнал построен из прямоугольных импульсов, знак которых определяется весовыми коэффициентами: а 0 = ,а. = 1, а 2 = -1, а их число N = 3. Длительность сигнала равна Зт и.

Решение. Подставляя выражение для сигнала в формулу (2.21), получим

Произведем замену переменной t - кт н на х:

Обозначим: & - т = - и заменим дискретные переменные &, т на переменные к, ц. В результате получим

График автокорреляционной функции для заданного сигнала показан на рис. 2.8, б. Эта функция зависит от автокорреляционной функции /? 0 (т) прямоугольного импульса и значений автокорреляционной функции г(

Рис. 2.8. Автокорреляционная функция кодированного сигнала: а - кодированный сигнал; 6 - автокорреляционная функция сигнала; в - автокорреляционная функция периодического сигнала

Вычислим периодическую автокорреляционную функцию, используя рассчитанную выше автокорреляционную функцию, полученные значения автокорреляционной функции кодовой последовательности и формулу (2.28).

Периодическая автокорреляционная функция

Подставим заданное значение N = 3 в полученную формулу:

С учетом значений автокорреляционной функции кодовой последовательности К+З) = 0, г(+ 2) = -1, г(+1) = О, КО) = 3 запишем окончательное выражение для одного периода периодической автокорреляционной функции сигнала:

График функции приведен на рис. 2.8, в.

Подразумевая под случайным процессом множество (ансамбль) функций времени, необходимо иметь в виду, что функциям, имеющим различную форму, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности, введенной в § 2.6 или 2.1, по всем функциям приводит к нулевому спектру процесса (при ) из-за случайности и независимости фаз спектральных составляющих в различных реализациях.

Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной функции, поскольку значение среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте . Размерность функции , являющейся отношением мощности к полосе астот, есть

Спектральную плотность случайного процесса можно найти, если известен механизм образования случайного процесса. Применительно к шумам, связанным с атомистической структурой материи и электричества, эта задача будет рассмотрена в § 7.3. Здесь же мы ограничимся несколькими определениями общего характера.

Выделив из ансамбля какую-либо реализацию и ограничив ее длительность конечным интервалом Т, можно применить к ней обычное преобразование Фурье и найти спектральную плотность (со). Тогда энергию рассматриваемого отрезка реализации можно вычислить с помощью формулы (2.66):

Разделив эту энергию на получим среднюю мощность k-й реализации на отрезке Т

При увеличении Т энергия возрастает, однако отношение стремится к некоторому пределу. Совершив предельный переход получим

представляет собой спектральную плотность средней мощности рассматриваемой реализации.

В общем случае величина должна быть усреднена по множеству реализаций. Ограничиваясь в данном случае рассмотрением стационарного и эргодического процесса, можно считать, что найденная усреднением по одной реализации функция характеризует весь процесс в целом.

Опуская индекс k, получаем окончательное выражение для средней мощности случайного процесса

Если рассматривается случайный процесс с ненулевым средним значением то спектральную плотность следует представить в форме

Международная образовательная корпорация

Факультет Прикладных Наук

Реферат

на тему «Спектр плотности мощности и его связь с функцией корреляции»

По дисциплине «Теория электрической связи»

Выполнила: студент группы

ФПН-РЭиТ(з)-4С *

Джумагельдин Д

Проверила: Глухова Н.В

Алматы, 2015

І Введение

ІІ Основная часть

1. Спектральная плотность мощности

1.1 Случайные величины

1.2 Плотность вероятности функции от случайной величины

2. Случайный процесс

3. Метод определения спектральной плотности мощности по корреляционной функции

ІІІ Заключение

ІV Список использованной литературы

Введение

Теория вероятностей рассматривает случайные величины и их характеристики в "статике". Задачи описания и изучения случайных сигналов "в динамике", как отображения случайных явлений, развивающихся во времени или по любой другой переменной, решает теория случайных процессов.

В качестве универсальной координаты для распределения случайных величин по независимой переменной будем использовать, как правило, переменную "t" и трактовать ее, чисто для удобства, как временную координату. Распределения случайных величин во времени, а равно и сигналов их отображающих в любой математической форме, обычно называют случайными процессами. В технической литературе термины "случайный сигнал" и "случайный процесс" используются как синонимы.

В процессе обработки и анализа физико-технических данных обычно приходится иметь дело с тремя типами сигналов, описываемых методами статистики. Во-первых, это информационные сигналы, отображающие физические процессы, вероятностные по своей природе, как, например, акты регистрации частиц ионизирующих излучения при распаде радионуклидов. Во вторых, информационные сигналы, зависимые от определенных параметров физических процессов или объектов, значения которых заранее неизвестны, и которые обычно подлежать определению по данным информационным сигналам. И в третьих, это шумы и помехи, хаотически изменяющиеся во времени, которые сопутствуют информационным сигналам, но, как правило, статистически независимы от них как по своим значениям, так и по изменениям во времени.



Спектральная плотность мощности

Спектральная плотность мощности позволяет судить о частотных свойствах случайного процесса. Она характеризует его интенсивность при различных частотах или, иначе, среднюю мощность, приходящуюся на единицу полосы частот.

Картину распределения средней мощности по частотам называют спектром мощности. Прибор, при помощи которого измеряется спектр мощности, называется анализатором спектра. Найденный в результате измерений спектр называется аппаратным спектром.

Работа анализатора спектра основана на следующих методах измерений:

· методе фильтрации;

· методе преобразования по теореме Винера-Хинчена;

· методе Фурье-преобразования;

· методе с использованием знаковых функций;

· методе аппаратного применения ортогональных функций.

Особенность измерения спектра мощности состоит в значительной продолжительности эксперимента. Нередко она превышает длительность существования реализации, или время, в течение которого сохраняется стационарность исследуемого процесса. Оценки спектра мощности, получаемые по одной реализации стационарного эргодического процесса, не всегда приемлемы. Часто приходится выполнять многочисленные измерения, так как необходимо усреднение реализаций как по времени, так и по ансамблю. Во многих случаях реализации исследуемых случайных процессов предварительно запоминают, что позволяет многократно повторять эксперимент с изменением продолжительности анализа, использованием различных алгоритмов обработки и аппаратуры.

В случае предварительной записи реализаций случайного процесса аппаратурные погрешности могут быть уменьшены до значений, обусловленных конечной длительностью реализации и нестационарностью.

Запоминание анализируемых реализаций позволяет ускорить аппаратурный анализ и автоматизировать его.

Случайные величины

Случайная величина описывается вероятностными законами. Вероятность того, что непрерывная величина х при измерении попадет в какой-либо интервал х 1 <х <х 2 , определяется выражением:

, где p(x) - плотность вероятности, причем . Для дискретной случайной величины х i P(x = x i)=P i , где P i - вероятность, соответствующая i-у уровню величины х.

 

 

Это интересно: